

# Project Guide • Generator Set





# Introduction

#### Information for the user of this project guide

The project information contained in the following is not binding, since technical data of products may especially change due to product development and customer requests. Caterpillar Motoren reserves the right to modify and amend data at any time. Any liability for accuracy of information provided herein is excluded.

Binding determination of data is made by means of the Technical Specification and such other agreements as may be entered into in connection with the order. We will supply further binding data, drawings, diagrams, electrical drawings, etc. in connection with a corresponding order.

This edition supersedes the previous edition of this project guide.

All rights reserved. Reproduction or copying only with our prior written consent.

Caterpillar Motoren GmbH & Co. KG P. O. Box, D-24157 Kiel Germany Phone +49 431 3995-01 Telefax +49 431 3995-2193

Issue July 2011

#### **Marine Financing Guidelines**

| Power:              | Cat and MaK.             |
|---------------------|--------------------------|
| Financial Products: | Construction, term       |
|                     | and repower financing.   |
| Repayment:          | Loan terms up to         |
|                     | 10 years, with longer    |
|                     | amortizations available. |
| Financed Amount:    | Up to 80% of your        |
|                     | vessel cost.             |
| Rates:              | Fixed or variable.       |
| Currency:           | US Dollars, Euros and    |
|                     | other widely traded      |
|                     | currencies.              |

#### **Global Resource from One Source**

When you select Cat Marine Power for your vessel, look to Cat Financial for world-class financial support. With marine lending offices in Europe, Asia and the US supporting Caterpillar's worldwide marine distribution network, Cat Financial is anchored in your homeport. We also have over 20 years of marine lending experience, so we understand your unique commercial marine business needs. Whether you're in the offshore support, cargo, ship assist, towing, fishing or passenger vessel industry, you can count on Cat Financial for the same high standard you expect from Caterpillar.

#### www.CAT.com/CatMarineFinance

Visit our web-site or see your local Cat dealer to learn how our marine financing plans and options can help your business succeed.



















# DET NORSKE VERITAS

# MANAGEMENT SYSTEM CERTIFICATE

Certificate No.: 81311-2010-AQ-GER-TGA

This is to certify that

# Caterpillar Motoren GmbH & Co. KG

#### **Falckensteiner Str. 2** 24159 Kiel - Germany

and the sites

Caterpillar Motoren Rostock GmbH Werftallee 13 18119 Rostock

Caterpillar Power Generation Systems Koboldstraße 2-4 24118 Kiel

Caterpillar Motoren Henstedt-Ulzburg GmbH Rudolf-Diesel Straße 5-9 24558 Henstedt-Ulzburg

Caterpillar Motoren Guangdong Co. Ltd. Shizhou Industrial Estate Chencun Town Shunde District, Foshan City 528341 P. R. China

has been found to conform to the Management System Standard

## ISO 9001:2008

This certificate is valid for the following product or service ranges:

For Catarpillar Motoren Kiel: Design, manufacture, sales and service of gas and diesel engines For Catarpillar Motoren Rostock: Manufacture of gas and diesel engines For Caterpillar Motoren Guangdong: **Production of diesel engines** 

For Caterpillar Power Generation Systems:

Sales, Engineering, Project Procurement, Project Management, Commissioning and Product Support Services for Power Plant based on Medium Speed Diesel and Gas Engines including turn.key installations For Caterpillar Motoren Henstedt-Ulzburg GmbH:

Logistcs services for shipment of service and production parts for medium-speed large engines for the marine and electric power generation sectors as well as the oil and gas industry

Initial Certification date: 03.11.2003

This certificate is valid until:

14.11.2013

The audit has been performed under the supervision of

> Jürgen Weißbauer Lead Auditor



for the Accredited Unit: DNV ZERTIFIZIERUNG UND UMWELTGUTACHTER GMBH

Place and date:

Essen, 15.11.2010

Nikolaus Kim Management Representative

Lack of fulfilment of conditions as set out in the Certification Agreement may render this Certificate invalid. DNV Zertifizierung und Umweltgutachter GmbH, Schnieringshof 14, 45329 Essen, Tel: +49 201 7296 300 Fax: +49 201 7296 333 - www.dnv.de/zertifizierung



# **Contents**

| 1.  | Engine description     |   |
|-----|------------------------|---|
| 1.1 | Engine description     | 1 |
| 1.2 | Engine design features | 2 |

# 2. General data and operation of engine

| 2.1   | General data and outputs                                | 3  |
|-------|---------------------------------------------------------|----|
| 2.1.1 | Output definitions                                      | 3  |
| 2.1.2 | Fuel consumption                                        | 4  |
| 2.1.3 | Lubricating oil consumption                             | 4  |
| 2.1.4 | Nitrogen oxide emissions (NO <sub>v</sub> -values)      | 4  |
| 2.1.5 | Technical data                                          | 5  |
| 2.2   | Engine dimensions                                       | 7  |
| 2.2.1 | Turbocharger at free end                                | 7  |
| 2.3   | Restrictions for low load operation                     | 8  |
| 2.4   | Load application and recovery behaviour                 | 9  |
| 2.4.1 | Standard loading up procedure                           | 11 |
| 2.4.2 | Speed control of auxiliary generating sets / DE - drive | 12 |

# 3. Systems

| 3.1   | Combustion air system                  | 13 |
|-------|----------------------------------------|----|
| 3.1.1 | General                                | 13 |
| 3.1.2 | Air intake from engine room (standard) | 13 |
| 3.1.3 | Air intake from outside                | 13 |
| 3.1.4 | Radiated heat                          | 13 |

Page

| 3.2   | Starting air system                                | 14 |  |  |  |
|-------|----------------------------------------------------|----|--|--|--|
| 3.2.1 | Quality requirements of starting air               |    |  |  |  |
| 3.2.2 | System diagram                                     |    |  |  |  |
| 3.2.3 | Starting air system components                     | 16 |  |  |  |
|       | a) Receiver capacit acc. to GL recommended AT1/AT2 | 16 |  |  |  |
|       | b) Compressor AC1/AC2                              | 17 |  |  |  |
| 3.3   | Exhaust system                                     | 17 |  |  |  |
| 3.3.1 | General                                            | 17 |  |  |  |
| 3.3.2 | Exhaust componsator                                | 17 |  |  |  |
| 3.3.3 | Silencer                                           | 18 |  |  |  |
| 3.3.4 | Exhaust gas boiler                                 | 19 |  |  |  |
| 3.3.5 | Turbocharger cleaning device                       | 20 |  |  |  |
| 3.4   | Cooling water system                               | 21 |  |  |  |
| 3.4.1 | Quality requirements of cooling water              | 21 |  |  |  |
| 3.4.2 | System diagram heat balance                        | 22 |  |  |  |
| 3.4.3 | System diagram cooling water                       |    |  |  |  |
| 3.4.4 | Cooling water system components                    | 25 |  |  |  |
|       | a) LT-cooling water pump FP2                       | 25 |  |  |  |
|       | b) LT-cooling water stand-by pump FP6              | 25 |  |  |  |
|       | c) HT-cooling water pump (fitted) FP1              | 25 |  |  |  |
|       | d) HT-cooling water stand-by pump FP5              | 25 |  |  |  |
|       | e) HT-temperature controller (separate) FR1        | 25 |  |  |  |
|       | f) LT-temperature controller (separate) FR2        | 26 |  |  |  |
|       | g) Pre-heater (fitted) FH5/FP7                     | 26 |  |  |  |
|       | h) Charge air temperature controller CR1 (fitted)  | 26 |  |  |  |
|       | i) HT-cooler (separate) FH1                        | 26 |  |  |  |
|       | j) LT-cooler (separate) FH2                        | 26 |  |  |  |
|       | k) Header tank FT1/FT2                             |    |  |  |  |
| 3.4.5 | Recommendation for cooling water system            | 27 |  |  |  |

| 3.5   | Fuel oil system, MGO/MDO operation                   | 28 |  |  |  |
|-------|------------------------------------------------------|----|--|--|--|
| 3.5.1 | Quality requirements of MGO/MDO fuel/permitted fuels |    |  |  |  |
| 3.5.2 | 2 System diagram                                     |    |  |  |  |
| 3.5.3 | MGO/MDO fuel system components                       | 30 |  |  |  |
|       | a) Fine filter (fitted) DF1                          | 30 |  |  |  |
|       | b) Strainer (separate) DF2                           | 30 |  |  |  |
|       | c) Pre-heater (separate) DH1                         | 30 |  |  |  |
|       | d) MGO/MDO cooler DH3                                | 30 |  |  |  |
|       | e) Feed pump (fitted) DP1                            | 30 |  |  |  |
|       | f) Feed pump (separate) DP1/DP2                      | 30 |  |  |  |
|       | g) MGO/MDO service tank DT1                          | 31 |  |  |  |
|       | h) Intermediate tank (separate) DT2                  | 31 |  |  |  |
|       | i) Separator DS1                                     | 31 |  |  |  |
| 3.6   | Fuel oil system, HFO operation                       | 31 |  |  |  |
| 3.6.1 | Quality requirements of HFO/permitted fuels          | 31 |  |  |  |
| 3.6.2 | Heavy fuel operation                                 | 33 |  |  |  |
| 3.6.3 | HFO system components                                |    |  |  |  |
|       | a) Fine filter (fitted) HF1                          | 34 |  |  |  |
|       | b) Strainer HF2                                      | 34 |  |  |  |
|       | c) Self cleaning filter HF4                          | 35 |  |  |  |
|       | d) Viscosimeter HR2                                  | 35 |  |  |  |
|       | e) Pressurizing pumps HP1/HP2                        | 35 |  |  |  |
|       | f) Circulating pumps HP3/HP4                         | 35 |  |  |  |
|       | g) Pressure regulating valve HR1                     | 36 |  |  |  |
|       | h) Final preheater HH1/HH2                           | 36 |  |  |  |
|       | i) Mixing tank (without insulation) HT2              | 36 |  |  |  |
|       | j) Settling tanks HT5/HT6                            | 37 |  |  |  |
|       | k) Day tank DT1/HT1                                  | 37 |  |  |  |
|       | I) Separators HS1/HS2                                | 37 |  |  |  |
| 3.6.4 | Heavy fuel oil supply and booster standard module    | 38 |  |  |  |
|       | a) Primary filter FIL1                               | 38 |  |  |  |
|       | b) Fuel pressure pumps                               | 38 |  |  |  |
|       | c) Pressure regulating system PCV1                   | 38 |  |  |  |
|       | d) Self cleaning fine filter AF1                     | 38 |  |  |  |
|       | e) Consumption measuring system FLOW1                | 38 |  |  |  |
|       | f) Mixing tank with accessories T1                   | 38 |  |  |  |
|       | g) Circulating pumps                                 | 38 |  |  |  |
|       | h) Final preheater H1/H2                             | 38 |  |  |  |
|       | Heating medium control valve CV1                     | 38 |  |  |  |
|       | Control cabinet                                      | 38 |  |  |  |

| 3.7   | Lubricating oil system                                                            | 43 |  |  |  |
|-------|-----------------------------------------------------------------------------------|----|--|--|--|
| 3.7.1 | Quality requirements of lubricating oil system                                    | 43 |  |  |  |
| 3.7.2 | System diagram                                                                    |    |  |  |  |
| 3.7.3 | Lubricating oil system components                                                 | 46 |  |  |  |
|       | a) Force pump (fitted) LP1                                                        | 46 |  |  |  |
|       | b) Prelubrication pump (fitted) LP5                                               | 46 |  |  |  |
|       | c) Stand-by force pump (separate) LP2                                             | 46 |  |  |  |
|       | d) Strainer LF4                                                                   | 46 |  |  |  |
|       | e) Self cleaning filter (fitted) LF2                                              | 46 |  |  |  |
|       | f) Cooler (separate)                                                              | 47 |  |  |  |
|       | g) Temperature controller (separate) LR1                                          | 48 |  |  |  |
|       | h) Circulation tank LT1                                                           | 48 |  |  |  |
|       | i) Crankcase ventilation C91                                                      | 48 |  |  |  |
|       | j) Separator; treatment at MGO/MDO operation LS1                                  | 49 |  |  |  |
|       | k) Separator; treatment at HFO operation LS1                                      | 49 |  |  |  |
| 3.7.4 | Recommendation lubricating oil system                                             | 49 |  |  |  |
| 4.    | Connecting parts engine                                                           |    |  |  |  |
| 4.1   | Data for torsional vibration calculation                                          | 51 |  |  |  |
| 4.2   | Resilient mounting of base frame                                                  | 52 |  |  |  |
| 4.3   | Generators structural requirements for MaK diesel gensets M 32 C                  | 53 |  |  |  |
| 5.    | Installation and Arrangement                                                      |    |  |  |  |
| 5.1   | General installation aspect                                                       | 54 |  |  |  |
| 5.2   | System connections engine                                                         | 55 |  |  |  |
| 5.3   | Space requirement for dismantling of charge air cooler and turbocharger cartridge | 56 |  |  |  |
| 5.4   | Installation of flexible pipe connections                                         | 57 |  |  |  |
|       |                                                                                   |    |  |  |  |

| 5.6 | Installation of crankcase ventilation at engine           | 58 |
|-----|-----------------------------------------------------------|----|
| 5.7 | Lifting of engines                                        | 59 |
| 6.  | Control and monitoring system                             |    |
| 6.1 | Engine control panel                                      | 60 |
| 6.2 | Genset control                                            | 61 |
| 6.3 | Engine monitoring                                         | 62 |
| 6.4 | Measuring points                                          | 63 |
| 6.5 | Local and remote indicators                               | 67 |
| 6.6 | LESS: Large Engine Safety System                          | 68 |
| 7.  | Diagnostic trending monitoring - DICARE                   | 70 |
| 8.  | Engine acceptance test                                    | 72 |
| 9.  | Engine International Air Pollution Prevention Certificate | 73 |
| 10. | Painting/Preservation                                     | 74 |
| 11. | Engine parts                                              | 76 |
| 12. | Flexible Camshaft Technology - FCT                        | 77 |



# 13. Cat Common Rail

| 13.1   | Fuel system        | 78 |
|--------|--------------------|----|
| 13.2   | Technology         | 79 |
| 13.2.1 | Cat CR System      | 80 |
| 13.2.2 | Safety concept     | 80 |
| 13.2.3 | High Pressure Pump | 80 |
| 13.2.4 | Rail               | 80 |
| 13.2.5 | Injector           | 81 |
| 13.2.6 | Electronics        | 81 |
| 13.3   | The Benefits       | 82 |

# 14. Appendix

| 14.1   | Exhaust system                                                     | 83 |
|--------|--------------------------------------------------------------------|----|
| 14.1.1 | Resistance in exhaust gas piping                                   | 83 |
| 14.1.2 | Exhaust data (preliminary)                                         | 84 |
| 14.1.3 | Exhaust sound power level                                          | 85 |
| 1/1 2  | Fuel eil evetem                                                    | 90 |
| 14.2   |                                                                    | 00 |
| 14.2.1 | Viscosity/temperature diagram                                      | 86 |
| 14 3   | Cooling water system                                               | 87 |
| 1/01   |                                                                    | 07 |
| 14.3.1 | Flow velocities                                                    | 0/ |
| 14.4   | Air borne sound power level                                        | 88 |
|        |                                                                    |    |
| 14.5   | Structure borne sound level $L_v$ expected (measured in test cell) | 90 |
|        |                                                                    |    |
| 14.6   | Data sheet for torsional vibration calculation                     | 91 |

# 1. Engine description

#### 1.1 Engine description

The M 32 C is a four stroke diesel engine, non-reversible, turbocharged and intercooled with direct fuel injection.

Option



## In-line engine M 32 C



Cylinder configuration: Bore: Stroke: Stroke/Bore-Ratio: Swept volume: Output/cyl.: BMEP: Revolutions: Mean piston speed: Turbocharging: Direction of rotation: 6,8,9 in-line 320 mm 480 mm 1.5 38.7 l/Cyl. 500 kW 25.9 bar 600 rpm 9.6 m/s single log, option: pulse clockwise, option: counter-clockwise



# 1. Engine description

#### **1.2 Engine design features**

- Baseframe
- Generator
- Compact Genset fitted lube oil cooler
- Designed for heavy fuel operation up to 700 cSt/50°C, fuel grade acc. to CIMAC H55 K55, ISO 8217, 1996 (E), ISO-F-RMH55 RMK55.
- 1-piece dry engine block made of nodular cast iron. It incorporates the crankshaft bearings, camshaft bearings, charge air receiver, vibration damper housing and gear drive housing.
- Underslung crankshaft with corrosion resistant main and big end bearing shells.
- Natural hardened liners, centrifugally casted, with calibration insert.
- Composite type pistons with steel crown and forged steel skirt or nodular cast iron skirt.
- Piston ring set consisting of 2 chromium plated compression rings, first ring with chromium-ceramic plated running surfaces and 1 chromium plated oil scraper ring. All ring grooves are located in the steel crown. The first ring groove is chromium plated. The other ring grooves are hardened.
- 3-piece connecting rod with the possibility to dismount the piston without opening the big end bearing.
- Cylinder head made of nodular cast iron with 2 inlet and 2 exhaust valves with valve rotators. Directly cooled exhaust valve seats.
- Camshaft made of sections per cylinder allowing a removal of the pieces sideways.
- Turbocharger supplied with inboard plain bearings lubricated by engine lubricating oil.
- 2-stage fresh water cooling system with 2-stage charge air cooler.
- Nozzle cooling for heavy fuel operation only with engine lubricating oil.
- Cat Common Rail will be available on request.
- For invisible smoke at part load operation Flexible Camshaft Technology is available.

# 2. General data and operation of engine

| Туре     | Engine<br>rating | Generator<br>rating<br>60/50 Hz<br>Speed:<br>600 rpm |       | Mean eff.<br>pressure | Mean<br>piston speed |
|----------|------------------|------------------------------------------------------|-------|-----------------------|----------------------|
|          | kW               | kWe                                                  | kVA   | bar                   | m/s                  |
| 6 M 32 C | 3,000            | 2,880                                                | 3,600 | 25.9                  | 9.6                  |
| 8 M 32 C | 4,000            | 3,840                                                | 4,800 | 25.9                  | 9.6                  |
| 9 M 32 C | 4,500            | 4,320                                                | 5,400 | 25.9                  | 9.6                  |

# Engine output $(P_M)$ / Electrical output $(P_w)$

#### 2.1 General data and outputs

#### 2.1.1 Output definition

The maximum continuous rating stated by Caterpillar Motoren refers to the following reference conditions according to "IACS" (International Association of Classification Societies) for main and auxiliary engines:

Reference conditions according to IACS (tropical conditions):

| air pressure         | 100 kPa (1 bar) |
|----------------------|-----------------|
| air temperature      | 318 K (45 °C)   |
| relative humidity    | 60 %            |
| seawater temperature | 305 K (32 °C)   |

An overload of 10 % is permitted for one hour within 12 hours of operation. The blocking will be fixed to 10 % above the maximum continuous rating.

# 2. General data and operation of engine

## 2.1.2 Fuel consumption

The fuel consumption data refers to the following reference conditions:

| intake temperature                       | 298 K (25 °C) |
|------------------------------------------|---------------|
| charge air temperature                   | 318 K (45 °C) |
| charge air coolant inlet temperature     | 298 K (25 °C) |
| net heating value of the Diesel oil      | 42,700 kJ/kg  |
| tolerance of the stated consumption data | 5 %           |

Specification of the fuel consumption data without built on pumps; for each pump fitted on an additional consumption of 1 % has to be calculated.

## 2.1.3 Lubricating oil consumption

Lubricating oil consumption:

0.6 g/kWh; value is based on rated output, tole-rance  $\pm$  0.3 g/kWh.

Actual data can be taken from the technical data.

# 2.1.4 Nitrogen oxide emissions (NO<sub>x</sub> - values)

 $NO_x$  - limit values according to IMO II: 10.1 g/kWh (n = 600 rpm)

Main engine: Diesel electric drive, according to cycle E2: 9.6 g/kWh

Auxiliary Genset, according to cycle D2: 9.8 g/kWh

# 2. General data and operation of engine

# 2.1.5 Technical data

|                                           | Cylinder | 6        | 8         | 9         |
|-------------------------------------------|----------|----------|-----------|-----------|
| Performance data                          |          |          |           |           |
| Maximum continuous rating acc. ISO 3046/1 | kW       | 3,000    | 4,000     | 4,500     |
| Speed                                     | 1/min    | 600      | 600       | 600       |
| Minimum speed                             | 1/min    | 360      | 360       | 360       |
| Brake mean effective pressure             | bar      | 25.9     | 25.9      | 25.9      |
| Charge air pressure                       | bar      | 3.8      | 3.8       | 3.8       |
| Firing pressure                           | bar      | 200      | 200       | 200       |
| Combustion air demand (ta=20 °C)          | m³/h     | 17,150   | 23,350    | 26,250    |
| Specific fuel oil consumption             |          |          |           |           |
| $n = const^{1}$ 100 %                     | g/kWh    | 177      | 177       | 177       |
| 85 %                                      | g/kWh    | 176      | 176       | 176       |
| 75 %                                      | g/kWh    | 177      | 177       | 177       |
| 50 %                                      | g/kWh    | 185      | 185       | 185       |
| Lubricating oil consumption <sup>2)</sup> | g/kWh    | 0.6      | 0.6       | 0.6       |
| NO <sub>x</sub> emission <sup>3)</sup>    | g/kWh    | 9.8      | 9.8       | 9.8       |
| Turbocharger type                         |          | ABB A145 | ABB TPL67 | ABB TPL67 |
| Fuel                                      |          |          |           |           |
| Engine driven booster pump                | m³/h     | 2.2/5    | 3.2/5     | 3.2/5     |
| Stand-by booster pump                     | m³/h     | 2.2/10   | 2.9/10    | 3.2/10    |
| Mesh size MDO fine filter                 | mm       | 0.025    | 0.025     | 0.025     |
| Mesh size HFO automatic filter            | mm       | 0.010    | 0.010     | 0.010     |
| Mesh size HFO fine filter                 | mm       | 0.034    | 0.034     | 0.034     |
| Nozzle cooling by lubricating oil system  |          |          |           |           |
| Lubricating oil                           |          |          |           |           |
| Engine driven pump                        | m³/h/bar | 118/10   | 118/10    | 118/10    |
| Independent pump                          | m³/h/bar | 60/10    | 80/10     | 80/10     |
| Working pressure on engine inlet          | bar      | 4 - 5    | 4 - 5     | 4 - 5     |
| Engine driven suction pump                | m³/h/bar | 140/3    | 140/3     | 140/3     |
| Indepent suction pump                     | m³/h/bar | 65/3     | 80/3      | 100/3     |
| Priming pump pressure                     | m³/h/bar | 8/5      | 11/5      | 11/5      |
| Sump tank content/dry sump content        | m³       | 4.1      | 5.4       | 6.1       |
| Temperature at engine inlet               | °C       | 60 - 65  | 60 - 65   | 60 - 65   |
| Temperature controller NB                 | mm       | 80       | 100       | 100       |
| Double filter NB                          | mm       | 80       | 80        | 80        |
| Mesh size double filter                   | mm       | 0.08     | 0.08      | 0.08      |
| Mesh size automatic filter                | mm       | 0.03     | 0.03      | 0.03      |

# 2. General data and operation of engine

## 2.1.5 Technical data

|                                                                                                                                                                                                                                        | Cylinder                                                                        | 6                                               | 8                                               | 9                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Fresh water cooling                                                                                                                                                                                                                    |                                                                                 |                                                 |                                                 |                                                 |
| Engine content<br>Pressure at engine inlet min/max<br>Header tank capacity<br>Temperature at engine outlet                                                                                                                             | m <sup>3</sup><br>bar<br>m <sup>3</sup><br>°C                                   | 0.7<br>4.5/6.0<br>0.35<br>80 - 90               | 0.95<br>4.5/6.0<br>0.45<br>80 - 90              | 1.05<br>4.5/6.0<br>0.55<br>80 - 90              |
| Two circuit system                                                                                                                                                                                                                     |                                                                                 |                                                 |                                                 |                                                 |
| Engine driven pump HT<br>Independent pump HT<br>HT-controller NB<br>Water demand LT-charge air cooler<br>Temperature at LT-charge air cooler inlet                                                                                     | m <sup>3</sup> /h/bar<br>m <sup>3</sup> /h/bar<br>mm<br>m <sup>3</sup> /h<br>°C | 70/4.5<br>70/4.0<br>100<br>40<br>38             | 70/4.5<br>70/4.0<br>100<br>60<br>38             | 80/4.5<br>80/4.0<br>100<br>60<br>38             |
| Heat Dissipation                                                                                                                                                                                                                       |                                                                                 |                                                 |                                                 |                                                 |
| Specific jacket water heat<br>Specific lub oil heat<br>Lub oil cooler<br>Jacket water<br>Charge air cooler (HT-Stage) <sup>4)</sup><br>Charge air cooler (LT-Stage) <sup>4)</sup><br>(HT-Stage before engine)<br>Heat radiation engine | kJ/kW<br>kJ/kW<br>kW<br>kW<br>kW<br>kW                                          | 500<br>525<br>440<br>420<br>1,175<br>300<br>150 | 500<br>525<br>590<br>550<br>1,530<br>440<br>190 | 500<br>525<br>660<br>625<br>1,705<br>505<br>210 |
| Exhaust gas                                                                                                                                                                                                                            |                                                                                 |                                                 |                                                 |                                                 |
| Silencer/spark arrester NB<br>Pipe diameter NB after turbiine<br>Maximum exhaust gas pressure drop<br>Exhaust gas temperature after turbine<br>(intake air 25 °C) <sup>5)</sup><br>Exhaust gas mass flow (intake air 25 °C)            | mm<br>mm<br>bar<br>°C<br>kg/h                                                   | 600<br>600<br>0.03<br>303<br>21,132             | 700<br>700<br>0.03<br>315<br>28,860             | 800<br>800<br>0.03<br>310<br>32,445             |
| Starting air                                                                                                                                                                                                                           |                                                                                 |                                                 |                                                 |                                                 |
| Starting air pressure max.<br>Minimum starting air pressure<br>Air consumption per Start <sup>6)</sup>                                                                                                                                 | bar<br>bar<br>Nm³                                                               | 30<br>10<br>1.2                                 | 30<br>10<br>1.2                                 | 30<br>10<br>1.2                                 |

<sup>1)</sup> Reference conditions: LCV = 42,700 kJ/kg, ambient temperature 25 °C

charge air coolant temperature 25 °C, tolerance 5 %, + 1 % for engine driven pump

 $^{2)}$  Standard value based on rated output, tolerance  $\pm$  0.3 g/kWh

<sup>3)</sup> MARPOL 73/78, annex VI, cycle E2, D2

<sup>4)</sup> Charge air heat based on 45 °C ambient temperature

<sup>5)</sup> Preheated engine

<sup>6)</sup> Tolerance 10 %, rel. humidity 60 %

# 2. General data and operation of engine

# 2.2 Engine dimensions

## 2.2.1 Turbocharger at free end



| Engine<br>Type | Dimensions [mm] |        |       |       |       |     | Dry<br>weight * |
|----------------|-----------------|--------|-------|-------|-------|-----|-----------------|
|                | L1              | L2     | H1    | H2    | W1    | W2  | [t]             |
| 6 M 32 C       | 9,302           | 8,869  | 3,375 | 1,900 | 2,639 | 962 | 73              |
| 8 M 32 C       | 10,886          | 10,461 | 3,513 | 1,900 | 2,611 | 262 | 92              |
| 9 M 32 C       | 11,419          | 10,991 | 3,513 | 1,900 | 2,611 | 262 | 98              |

\* depending of generator weight

Prime mover and generator are always flexibly coupled.

## **Removal of:**

| Piston         | in transverse direction<br>in longitudinal direction | X1 = 4,470 mm<br>X2 = 4,840 mm |
|----------------|------------------------------------------------------|--------------------------------|
| Cylinder Liner | in transverse direction<br>in longitudinal direction | Y1 = 4,940 mm<br>Y2 = 5,305 mm |

Reduced removal height with special tools only.

Min. centre distance of 2 gensets:

3000 mm

# 2. General data and operation of engine

#### 2.3 Restrictions for low load operation

The engine can be started, stopped and run on heavy fuel oil under all operating conditions.

The HFO system of the engine remains in operation and keeps the HFO at injection viscosity. The temperature of the engine injection systems is maintained by circulating hot HFO and heat losses are compensated.

The lube oil treatment system (lube oil separator) remains in operation, the lube oil is separated continuously.

The operating temperature of the engine cooling water is maintained by the cooling water preheater.

Below 25 % output heavy fuel operation is neither efficient nor economical.

A change-over to diesel oil is recommended to avoid disadvantages as e.g. increased wear and tear, contamination of the air and exhaust gas systems and increased contamination of lube oil.



#### **Cleaning run of engine**

# 2. General data and operation of engine

#### 2.4 Load application and recovery behaviour

The permissible load increase according to ISO 8528-5 and IACS must be carried out in several steps, depending on the mean effective pressure. The ship's network must be designed so that this permissible load increase is kept. The shipyard is to provide the approval of the responsible classification society in time before classification acceptance of the engine.

Guide values for maximum possible sudden power increases as a function of brake mean effective pressure, pme, at declared power.

#### M 32 C Inline engines



#### To achieve recovery behaviour according to class requirements

1. max. load from 0 % to 30 % output 2. max. load from 30 % to 52 % output 3. max. load from 52 % to 71 % output 4. max. load from 71 % to 100 % output

# 2. General data and operation of engine

## 2.4 Load application and recovery behaviour

Recovery behaviour after a sudden load increase according to load steps depending on pme / unloading corresponding ISO 8528-5.



Time

# 2. General data and operation of engine

# 2.4.1 Standard loading up procedure

Our standard loading procedure for M 32 C in-line engines to achieve recovery behaviour in accordance with class requirements.

For higher load stages or different loading procedures FCT (Flexible Camshaft Technology) is recommended.



# 2. General data and operation of engine

## 2.4.2 Speed control of auxiliary generating sets / DE - drive

Electronic governor system maker Regulateur Europa (RE)

| Туре: | Actuator 2221      | Optional Woodward: | Actuator UG40 |
|-------|--------------------|--------------------|---------------|
|       | Governor Viking 35 |                    | Governor 723+ |

The engine is equipped with an actuator without mech. back-up governor (optional: with back-up). The electronic governor is delivered as a separate part for installation by the shipyard at a suitable place (e.g. switchboard).

On request the governor can be installed inside a separate cabinet.

The governor comprises the following functions:

- Speed setting range to be entered via parameters
- Adjustable acceleration and deceleration times
- Adjustable synchronizing ramp rates
- Starting fuel limiter
- Input for stop (not emergency stop)
- 18 32 V DC voltage supply
- Alarm output
- Isochronous load sharing by master / slave princip
- Droop operation selectable



#### 3.1 Combustion air system

#### 3.1.1 General

To obtain good working conditions in the engine room and to ensure trouble free operation of all equipment attention shall be paid to the engine room ventilation and the supply of combustion air.

The combustion air required and the heat radiation of all consumers/heat producers must be taken into account

#### 3.1.2 Air intake from engine room (standard)

- Fans are to be designed for a slight overpressure in the engine room.
- On system side the penetration of water, sand, dust, and exhaust gas must be avoided.
- When operating under tropical conditions the air flow must be conveyed directly to the turbocharger.
- The temperature at turbocharger filter should not fall below + 10 °C
- In cold areas warming up the air in the engine room must be ensured.

#### 3.1.3 Air intake from outside

- The intake air duct is to be provided with a filter. Penetration of water, sand, dust, and exhaust gas must be avoided.
- Connection to the turbocharger is to be established via an expansion joint (to be supplied by the yard). For this purpose the turbocharger will be equipped with a connection socket.
- At temperatures below + 10 °C Caterpillar Motoren/Application Engineering must be consulted.

#### 3.1.4 Radiated heat

#### see technical data

To dissipate the radiated heat a slight and evenly distributed air current is to be led along the engine exhaust gas manifold starting from the turbocharger

#### 3.2 Starting air system

As required by the classification societies, two air compressors compress the starting air to a nominal pressure of 30 bar. The starting air has to have a certain quality, be free from solid particles, oil, and water.

### 3.2.1 Quality requirements of starting air

For the faultness operation of engine a staring air quality of class 4 according ISO 8573-1 is required.

| Class | Particle size | Particle density | Water        | Water | Oil                          |
|-------|---------------|------------------|--------------|-------|------------------------------|
|       |               |                  | Pressure dew |       | Residual oil                 |
|       | max. in µm    | max. in mg/m³    | point in °C  | mg/m³ | content in mg/m <sup>3</sup> |
| 1     | 0.1           | 0.1              | -70          | 3     | 0.01                         |
| 2     | 1             | 1                | -40          | 120   | 0.1                          |
| 3     | 5             | 5                | -20          | 880   | 1                            |
| 4     | 15            | 8                | 3            | 6,000 | 5                            |
| 5     | 40            | 10               | 7            | 7,800 | 25                           |
| 6     |               |                  | 10           | 9,400 |                              |

The standard DIN ISO 8573-1 define the quality cases of compressed air as follows:

#### **Oil content**

Specification of the remnant of aerosols and hydrocarbons which may be contained in the compressed air.

#### Particle size and density

Specification of size and concentration of particles which still may be contained in the compressed air.

#### **Pressure dew point**

Specification of the temperature on which the compressed air can cool down without the steam contained in it condensing. The pressure dewpoint changes with the air pressure.

# 3. Systems

### 3.2.2 System diagram



#### **General notes:**

For location, dimensions, and design (e.g. flexible connection) of the disconnecting points see engine installation drawing.

Clean and dry starting air is required. A starting air filter has to be installed before engine, if required.

\* Automatic drain required

#### Notes:

- a Control air
- d Water drain (to be mounted at the lowest point)
- e To engine no. 2
- h Please refer to the measuring point list regarding design of the monitoring devices

#### **Connecting points:**

C86 Connection, starting air

#### **Accessories and fittings:**

- AC1 Compressor
- AC2 Stand-by compressor
- AR1 Starting valve
- AR4 Pressure reducing valve
- AR5 Oil and water separator
- AT1 Starting air receiver (air bottle)
- AT2 Starting air receiver (air bottle)
- PI Pressure indicator
- PSL Pressure switch low, only for main engine
- PT Pressure transmitter

#### 3.2.3 Starting air system components

#### a) Receiver capacity acc. to GL recommendation AT1/AT2

| Number<br>of gensets | Number<br>of receivers | Receiver capacity<br>available [l] | L<br>mm | Dø<br>mm | Valve head | Weight<br>approx. kg |
|----------------------|------------------------|------------------------------------|---------|----------|------------|----------------------|
| 2                    | 2                      | 500                                | 3,355   | 480      | DN 50      | 320                  |
| 3, 4                 | 2                      | 1,000                              | 3,670   | 650      | DN 50      | 620                  |

#### 1 Starting valve DN 38

- 2 Filling valve DN 18
- 3 Inlet filling valve
- 4 Safety valve G1/2"
- 5 Free connection G1/2"
- 6 Drainage horizontal
- 7 Drainage vertical
- 9 Connection G1/2" for vent
- 10 Outlet starting-air valve
- 12 Pressure Gauge

#### **Option**:

- 8 Typhon valve DN 16
- 11 Outlet typhon valve





When  $CO_2$  fire extinguishing plants are arranged in the engine room, the blow-off connection of the safety valve is to be piped to the outside.

#### **Requirement of Classification Societies (regarding design)**

6

- No. of starts:
- No. of receivers: min. 2



b) Compressor AC1/AC2:

2 compressors with a total output of 50 % each are required. The filling time from 0 to 30 bar must not exceed 1 hour

700

Capacity

 $V [m^{3}/h] = \Sigma V_{Bec} \bullet 30$ 

V<sub>Rec</sub> - Total receiver volume [m<sup>3</sup>]

#### 3.3 Exhaust system

The exhaust system carries the engines exhaust gases out of the engine room, through piping, to the atmosphere. A good exhaust system will have a minimum backpressure. Exhaust backpressure is generally detrimental, as it tends to reduce the air flow through the engine. Indirectly, exhaust backpressure tends to raise exhaust temperature which will reduce exhaust valve and turbocharger life.

#### 3.3.1 General

| Position of exhaust gas nozzle:   | A nozzle position of<br>The basic position is<br>elbow.                                                | 0, 30 and 60 is possi<br>s 30°, 0° or 60° are ı | ble.<br>reached by using an        |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------|--|
| Design of the pipe cross-section: | The pressure loss is to be minimized in order to optimize fuel consumption and thermal load of engine. |                                                 |                                    |  |
|                                   | Max. flow velocity: 4                                                                                  | 10m/s (guide value).                            |                                    |  |
|                                   | Max. pressure loss<br>30 mbar<br>(lower values will re                                                 | (incl. silencer and ex<br>duce thermal load c   | xhaust gas boiler):<br>of engine). |  |
| 3.3.2 Exhaust compensator         |                                                                                                        | Diameter DN                                     | Lenath [mm]                        |  |
| -                                 | 6 M 32 C                                                                                               | 600                                             | 450                                |  |

8/9 M 32 C

520

## 3.3.3 Silencer

Design according to the absorbtion principle with wide-band attentuation over great frequency range and low pressure loss due to straight direction of flow. Sound absorbing filling consisting of resistant mineral wool.

Sound level reduction 35 dB(A) (standard). Max. permissible flow velocity 40 m/s.

Sllencer with spark arrester:

Soot separation by means of a swirl device (particles are spun towards the outside and separated in the collecting chamber). Sound level reduction 35 dB(A). Max. permissible flow velocity 40 m/s.

# Silencers are to be insulated by the yard. Foundation brackets are to be provided as an option.





Dimension of silencer/spark arrestor and silencer:

Installation: vertical/horizontal Flange according to DIN 86044 Counterflanges, screws and gaskets are included, without supports and insulation

#### Silencer



#### Spark arrestor and silencer



|            | Attentuation |       |     |     | 35 dI | 3 (A) |
|------------|--------------|-------|-----|-----|-------|-------|
|            | DN           | D     | А   | В   | L     | kg    |
| 6 M 32 C   | 600          | 1,100 | 320 | 669 | 4,759 | 1,300 |
| 8/9 M 32 C | 700          | 1,300 | 320 | 785 | 5,049 | 1,650 |

#### 3.3.4 Exhaust gas boiler

Each engine should have a separate exhaust gas boiler. Alternatively, a common boiler with separate gas sections for each engine is acceptable.

Particularly when exhaust gas boilers are installed attention must be paid not to exceed the maximum recommended back pressure.

# 3. Systems

## 3.3.5 Turbocharger cleaning device

**Cleaning the turbocharger compressor:** The components for cleaning (dosing vessel, pipes, shutoff valve) are engine mounted.

Water is fed before compressor wheel via injection pipes during full load operation every 24 hours.

Cleaning the turbine blade and nozzle ring:

The cleaning is carried out with clean fresh water "wet cleaning" during low load operation at regular intervals, depending on the fuel quality, 150 hours.

Duration of the cleaning period is approx. 15 minutes (2 intervals). Fresh water of 2 - 2.5 bar is required.

During cleaning the water drain should be checked. Therefore the shipyard has to install a funnel after connection point C36.



# 3. Systems

#### 3.4 Cooling water system

MaK engines generally use two closed water cooling circuits. The High Temperature (HT) cooling water circuit is used to cool the charge air - in first stage - and the engine jacket. The Low Temperature (LT) cooling water circuit cools the charge air - in second stage - and the lub oil. Moreover, the LT cooling water circuit can be used to cool additional equipment, e.g. a generator or gearbox. The cooling water needs to be treated to guarantee a certain quality.

#### 3.4.1 Quality requirements of cooling water

The engine cooling water is a medium, which must be carefully selected, treated and controlled. In case of using untreated cooling water corrosion, erosion and caviation can occur on the walls of the cooling system.

Deposits can impair the heat transfer and may result in thermal overload on the components to be cooled. The treatment with an anti-corrosion agent has to be effected before the first commissioning of the plant.

#### **Requirements**

The characteristics of the untreated cooling water must be within the following limits:

- distillate or freshwater free from foreign matter (no sea water or waste water)
- a total hardness of max. 10° dH
- pH-value 6.8 8
- chloride ion content of max. 50 mg/l

#### Supplementary information

Distillate: If a distillate or fully desalinated water is available, this should preferably be used as engine cooling water.

Hardness: Water with more than 10° dGH (German total hardness) must be mixed with distillate or be softened.

#### Treatment before operating the engine for the first time

Treatment with anti-corrosion agent should be done before the engine is operated for the first time so as to prevent irreparable initial damage.

#### It is not allowed to run the engine without cooling water treatment!

# 3. Systems



#### 3.4.2 System diagram heat balance

#### 3. **Systems**





#### Korrasianschultz INTI CARROSION FREATMENT ത (s) (h) FH3 (h) (97) (C32a) (326) FR 0\_LH1 ((19) ER Ö. 4 0 СН1 СН2 ΧH. Motor/ENGINE FR A ന пнз 0 $\sim$ )FP2 × (n)([28) 文

#### System diagram cooling water 3.4.3

#### Notes:

- b Measurement min. 2.0 m distance to C17
- d Min. 4 m and max. 12 m above engine center
- е Bypass DN 12
- f Drain
- Please refer to the measuring point list regarding design of the monitoring devices h
- Air supply 2 10 bar m

#### Accessories and fittings:

- CH1 Charge air cooler HT
- CH2 Charge air cooler LT
- CR1 Charge air temperature control valve
- CR3 Sensor for charge air temperature control valve SF1
- Freshwater cooler HT FH1
- FH2 Freshwater cooler LT
- FH3 Heat consumer
- FH5 Freshwater preheater
- FP1 Freshwater pump (fitted on engine) HT
- FP2 Freshwater pump (fitted on engine) LT
- FP5 Freshwater stand-by pump HT
- Freshwater stand-by pump LT FP6
- FP7 Preheating pump
- Temperature control valve HT FR1
- FR2 Temperature control valve LT
- FR3 Flow temperature control valve HT

- FT1 Compensation tank HT Compensation tank LT FT2
- LH1 Luboil cooler
- LH3 Gear luboil cooler
- Seawater filter
- SP1 Seawater pump
- SP2
- Seawater stand-by pump
- ST1 Sea chest
- Level indicator 11
- LSL Level switch low
- ΡI Pressure indicator
- PSL Pressure switch low
- PSLL Pressure switch low low
- PT Pressure transmitter
- ΤI Temperature indicator
- TSHH Temperature switch high
- Temperature transmitter (PT 100) TT

#### **General notes:**

For location, dimensions and design (e.g. flexible connection) of the disconnecting points see engine installation drawing.

With skin cooler not required:

Seawater system (SP1, SP2, SF1, ST1)

#### **Connecting points:**

- C14 Charge air cooler LT, inlet
- C15 Charge air cooler LT, outlet
- C16 Charge air cooler HT, inlet
- Freshwater pump HT, inlet C21
- Freshwater pump LT, outlet C22
- C25 Cooling water, engine outlet
- C28 Freshwater pump LT, outlet
- C31 Freshwater pump HT, outlet
- C37 Vent
  - C45 Connection, pressure swith LT, pressure gauge

#### 3.4.4 Cooling water system components

The heat generated by the engine (cylinder, charge air and lube oil) is to be dissipated by treated freshwater acc. to the MaK coolant regulations.

The system components of the LT cooling water circuit are designed for a max. LT cooling water temperature of 38 °C with a corresponding seawater temperature of 32 °C in tropical conditions.

| Two-circuit cooling:                   | with two-stage charge air cooler.                               |
|----------------------------------------|-----------------------------------------------------------------|
| a) LT-cooling water pump FP4:          | <b>Option: fitted (FP2)</b><br>Capacity: acc. to heat balance   |
| b) LT-cooling water stand-by pump FP6: | Capacity: acc. to heat balance                                  |
| c) HT-cooling water pump (fitted) FP1: | <b>Option: separate (FP3)</b><br>Capacity: acc. to heat balance |

d) HT-cooling water stand-by pump FP5:

e) HT-temperature controller (separate) FR1:

#### **Option: fitted**

Capacity: acc. to heat balance

P-controller with manual emergency adjustment (basis). Option: PI-controller with electric drive (sep. only)


# 3. Systems

| f) | LT-temperature controller (separate) FR2:      | P-cont<br>(basis)                                                                                                      | roller with ma<br>. Option: PI-cor                                              | anual emergency adjustment<br>ntroller with electric drive.                              |
|----|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| g) | Pre-heater (fitted) FH5/FP7:                   | Consisting of circulating pump <sup>1)</sup> , electric pre<br>and control cabinet (separate: W x H x D = 4<br>x 200). |                                                                                 |                                                                                          |
|    |                                                | 1)<br>2)                                                                                                               | Capacity<br>Output                                                              | 8m³/h<br>24 kW                                                                           |
| h) | Charge air temperature controller CR1 (fitted) | : P-cont<br>conditi<br>Option<br>only)                                                                                 | roller for cha<br>on.<br>: Pl-controller                                        | rge air heating in part load<br>with electric drive (separate                            |
| i) | HT-cooler (separate) FH1:                      | Plate t<br>on the                                                                                                      | ype (plates ma<br>total heat to be                                              | de of titanium), size depending<br>e dissipated.                                         |
| j) | LT-cooler (separate) FH2:                      | Plate t<br>on the                                                                                                      | ype (plates ma<br>total heat to be                                              | de of titanium), size depending<br>e dissipated.                                         |
| k) | Header tank FT1/FT2:                           | <ul> <li>Arra<br/>crat</li> <li>Size</li> <li>All<br/>con</li> </ul>                                                   | angement: mir<br>nkshaft centre<br>e acc. to techni<br>continuous ve<br>nected. | n. 4 m / max. 16 m above<br>line (CL).<br>cal engine data.<br>ents from engine are to be |

# 3. Systems

# 3.4.5 Recommendation for cooling water system

**Drain tank with filling pump:** 

It is recommended to collect the treated water when carrying out maintenance work (to be installed by the yard).

**Electric motor driven pumps:** 

Option for fresh and seawater, vertical design. Rough calculation of power demand for the electric balance.

$$P = \frac{\rho \bullet H \bullet V}{367 \bullet \eta} [kW]$$

| Ρ              | - | Power [kW]                  |               |           |      |
|----------------|---|-----------------------------|---------------|-----------|------|
| P <sub>M</sub> | - | Power of electr. motor [kW] | PM = 1.5 • P  | < 1.5     | kW   |
| V              | - | Flow rate [m³/h]            | PM = 1.25 • P | 1.5 - 4   | kW   |
| Н              | - | Delivery head [m]           | PM = 1.2 • P  | 4 - 7.5   | kW   |
| ρ              | - | Density [kg/dm³]            | PM = 1.15 • P | > 7.5 - 4 | 0 kW |
| η              | - | Pump efficiency             | PM = 1.1 • P  | > 40      | kW   |
|                |   | 0.70 for centrifugal pumps  |               |           |      |

# 3. Systems

#### 3.5 Fuel oil system, MGO/MDO operation

MaK diesel engines have the capacity to burn a wide variety of fuels. See the information on fuel requirements in section MDO / MGO and heavy fuel operation or consult the Caterpillar Motoren technical product support. For a faultless operation of MaK engines the minimum Caterpillar Motoren requirements for storage, treatment and supply systems have to be observed; as shown in the following sections.

#### 3.5.1 Quality requirements of MGO/MDO fuel/permitted fuels

Two fuel product groups are permitted for MaK engines:

| Pure distillates:       | Gas oil, marine gas oils, diesel fuel                                                                                                                                      |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Distillate/mixed fuels: | Marine gas oil (MGO), marine diesel oil (MDO). The difference<br>between distillate/mixed fuels and pure distillates are higher<br>density, sulphur content and viscosity. |  |  |

|               | MGO                |                               | MDO                    |                               |  |
|---------------|--------------------|-------------------------------|------------------------|-------------------------------|--|
|               | Designation        | Max. viscosity<br>[cSt/40 °C] | Designation            | Max. viscosity<br>[cSt/40 °C] |  |
| ISO 8217:2005 | ISO-F-DMA          | 1.5 - 6.0                     | ISO-F-DMB<br>ISO-F-DMC | 11<br>14                      |  |
| ASTM D 975-78 | No. 1 D<br>No. 2 D | 2.4<br>4.1                    | No. 2 D<br>No. 4 D     | 4.1<br>24.0                   |  |
| DIN           | <b>DIN EN 590</b>  | 8                             |                        |                               |  |

Max. injection viscosity 12 cSt (2 °E)

#### 3.5.2 System diagram — Fuel oil system MGO/MDO operation



# 3. Systems

#### 3.5.3 MGO/MDO fuel system components

- a) Fine filter (fitted) DF1:
- b) Strainer (separate) DF2:

Duplex filter, mesh size see technical data

Mesh size 0.32 mm, dimensions see HFO-system

c) Pre-heater (separate) DH1:

Heating capacity

$$\Omega [kW] = \frac{\mathsf{P}_{eng.} [kW]}{166}$$

Not required:

• MG0  $\leq$  7 cSt/40°C

• Heated day tank

d) MGO/MDO Cooler DH3:

Required if the heat can not be removed by radiation of the day tank

e) Feed pump (fitted) DP1:

Capacity see technical data

f) Feed pump (separate) DP1/DP2:

Capacity see technical data Screw type pump with mechanical seal. Installation vertical or horizontal. Delivery head 5 bar.

# 3. Systems

| g) MGO/MDO service tank DT1:         | The classification societies specify that at least two<br>service tanks are required. The minimum volume<br>of each tank should, in addition to the MDO/MGO<br>consumption of the generating sets, enable an eight<br>hour full load operation of the main engine. |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Cleaning the MDO/MGO by an additional separator<br>should, in the first place, be designed to meet the<br>requirements of the diesel generator sets on board.                                                                                                      |
|                                      | The tank should be provided with a sludge space including a sludge drain valve and an overflow pipe from the MDO/MGO service tank.                                                                                                                                 |
| h) Intermediate tank (separate) DT2: | Capactiy 100 I                                                                                                                                                                                                                                                     |
| i) Separator DS1:                    | Recommended for MGO<br>Required for MDO                                                                                                                                                                                                                            |
|                                      | The utilisation must be in accordance with the makers official recommendation (details from the head office).                                                                                                                                                      |
|                                      | $V [ka/b] = 0.22 \bullet P [kW]$                                                                                                                                                                                                                                   |

### 3.6 Fuel oil system, HFO operation

# 3.6.1 Quality requirements of HFO/permitted fuels

#### Minimum requirements for storage, treatment and supply systems

**Bunker tanks:** 

In order to avoid severe operational problems due to incompatibility, each bunkering must be made in a separate storage tank.



#### CIMAC **RMK700** 1,010 K55 ISO: not limited ISO: Carbon Residue 10 ISO: 0.20 0.15 7) 0.10 55 0.5 4.5 600 15 09 30 22 8 15 8 CIMAC **RMH700** H55 991 RMK500 ISO: 975 ISO: 981 CIMAC ISO: 985 1,010 K45 0.15 7) 0.10 45 0.5 4.5 600 60 22 80 15 15 30 30 CIMAC **RMH500** 2) 33) 55) 7) H45 991 **RMK380** CIMAC 1,010 K35 0.15 7) 600 55 700 7000 22 CIMAC **RMH380** H35 0.10 35 60 0.5 4.5 80 15 15 30 30 45 500 5000 991 CIMAC **RMG380** 0.15 G35 300 18 35 380 3000 CIMAC **RMF180** 0.15 F25 500 20 25 180 500 0.10 0.5 4.5 991 25 60 80 15 15 30 30 CIMAC **RME180** E25 15 <sup>5)</sup> 0.10 200 15 15 80 600 CIMAC RMD80 980 4) D15 0.10 0.10 0.5 350 15 4.0 15 15 00 30 14 8 8 10 40 300 CIMAC RMB30 C10 300 14 24 975 <sup>3)</sup> 7 30 200 CIMAC RMB30 B10 0.10 0.10 9 60 0.5 3.5 80 15 15 30 12 6) 150 0 9 An indication of the approximate equivalents in CIMAC RMA30 950<sup>2)</sup> A10 kinematic viscosity at 50 °C and Redw. I sec. e 2 Kinematic viscosity at 100 °C mm²/s (cSt) Kinematic viscosity at 50 °C mm²/s (cSt) Kinematic viscosity at 100 °F Redw. I sec. S08217 (2005):F-Limit тах тах тах тах тах тах тах тах min min тах max max max max Designation Related to (V/V) % mg/kg mg/kg mg/kg mg/kg mg/kg kg/m³ cSt<sup>1)</sup> (m/m) Dim. (m/m) (m/m) (m/m) ပ္ ပ္ % % 100 °F is given below: Aluminium + Silicon Pour point (winter) (summer) **Fotal sedim**, after **Carbon Residue** Kin. viscosity at Density at 15°C Characteristic Conradson) Flash point Vanadium Phosphor Calcium Sulphur ageing 100°C Water Zinc Ash =

#### Requirements for residual fuels for diesel engines (as bunkered)

Fuel shall be free of used lubricating oil (ulo)

#### **Systems** 3.

#### 3.6.2 Heavy fuel operation



For location, dimensions and design (e.g. flexible connection) of the connecting points see engine installation drawing.

If a "Fuel oil supply and booster module" is supplied by Caterpillar Motoren, arrangement and scope of the supply components are to be gathered from the module scheme. Valve fittings with loose cones are not accepted in the admission and return lines

#### Accessories and fittings:

| DH3     | MGO/MDO cooler               |
|---------|------------------------------|
| DP1     | Diesel oil feed pump         |
| DR2     | Pressure regulating valve    |
| DT1     | Diesel oil day tank          |
| DT2     | Diesel oil intermediate tank |
| HF1     | Fine filter (duplex filter)  |
| HF2     | Primary filter               |
| HF4     | Self cleaning filter         |
| HH1     | Heavy fuel final preheater   |
| HH2     | Stand-by final preheater     |
| HH4     | Heating coil                 |
| HP1/HP2 | Pressure pump                |
| HP3/HP4 | Circulating pump             |
| HR1     | Pressure regulating valve    |
| HR2     | Viscosimeter                 |
| HT1     | Heavy fuel day tank          |
| HT2     | Mixing tank                  |

- HT4 Mixing receiver
- KP1 Injection pump
- FQ1 Flow quantity indicator
- Level indicator LI
- LSH Level switch high
- LSL Level switch low
- PDI Diff. pressure indicator
- PDSH Diff. pressure swith high
- PDSL Diff. pressure switch low
- ΡI Pressure indicator
- PSL Pressure switch low
- PT Pressure transmitter
- ΤI Temperature indicator
- VI Viscosity indicator
- VSH Viscosity control switch high
- VSL Viscosity control switch low

#### Notes:

HT4

Flow velocity in circuit system  $\leq 0.5$  m/s ff

์ **C**81

- Lead vent pipe beyond day tank level m
- Free outlet required р
- Please refer to the measuring point s list regarding design of the monitoring devices
- Neither insulated nor heated pipe tt
- From diesel oil separator or diesel oil u transfer pump

All heavy fuel pipes have to be insulated. ---- heated pipe

#### **Connecting points:**

- Inlet duplex filter C76
- C78 Fuel outlet
- C80 Drip fuel
- C81 Drip fuel
- C81b Drip fuel (filter pan)

# 3. Systems

#### **3.6.3 HFO system components**

Supply system (Separate components):

A closed **pressurized system** between daytank and engine is required as well as the installation of an automatic backflushing filter with a mesh size of 10  $\mu$ m (absolute).

a) Fine filter (fitted) HF1:

- Mesh size 34 µm
- Without heating
- Differential pressure indication and alarm contact fitted

b) Strainer HF2:



| Output   | DN | H1  | H2  | W   | D   |
|----------|----|-----|-----|-----|-----|
| [kW]     |    |     | [m  | m]  |     |
| ≤ 5,000  | 32 | 249 | 220 | 206 | 180 |
| ≤ 10,000 | 40 | 330 | 300 | 250 | 210 |
| ≤ 20,000 | 65 | 523 | 480 | 260 | 355 |
| > 20 000 | 80 | 690 | 700 | 370 | 430 |

#### Mesh size 0.32 mm

#### c) Self cleaning filter HF4:

Mesh size 10  $\mu m$  (absolute), make Boll & Kirch\*, without bypass filter.

\* In case of Caterpillar Motoren supply.

1110

250

200

≤ 8,000 kW, Type 6.60, DN 50



**Dismantling of sieve** 

600

300 mm



d) Viscosimeter HR2:

This device regulates automatically the heating of the final-preheater depending on the viscosity of the bunkered fuel oil, so that the fuel will reach the nozzles with the viscosity required for injection.

460

e) Pressurizing pumps HP1/HP2:

Screw type pump with mechanical seal. Installation vertical or horizontal. Delivery head 5 bar.

f) Circulating pumps HP3/HP4:

Screw type pump with mechanical seal. Installation vertical or horizontal. Delivery head 5 bar.

Capacity 
$$V [m^{3}/h] = 0.7 \bullet \frac{P_{eng.} [kW]}{1,000}$$

#### g) Pressure regulating valve HR1:

≤ 3,000 kW

Controls the pressure at the engine inlet, approx. 4 bar.

#### **Engine outputs**



h) Final preheater HH1/HH2:



> 3,000 kW



Heating media:

- Electric current (max. surface power density 1.1 W/cm<sup>2</sup>) •
- Steam
- Thermal oil •

Temperature at engine inlet max. 150 °C. The piping for both heaters shall be arranged for separate and series operation. Parallel operation with half the throughout must be avoided due to the risk of sludge deposits.

#### i) Mixing tank (without insulation) HT2:

| Engine output | Volume | Dim   | Weight |       |      |
|---------------|--------|-------|--------|-------|------|
| [kW]          | [I]    | А     | D      | E     | [kg] |
| ≤ 4,000       | 50     | 950   | 323    | 750   | 70   |
| ≤ 10,000      | 100    | 1,700 | 323    | 1,500 | 120  |
| > 10,000      | 200    | 1,700 | 406    | 1,500 | 175  |



The missing tank compensates pressure surges which occur in the pressurised part of the fuel system. For this purpose there has to be an air cushion in the tank.

# 3. Systems

j) Settling tanks HT5/HT6:

In order to ensure a sufficient settling effect, the following settling tank designs are permissible:

- 2 settling tanks, each with a capacity sufficient for 24 hours full load operation of all consumers
- 1 settling tank with a capacity sufficient for 36 hours full load operation of all consumers and automatic filling
- Settling tank temperature 70 80 °C

k) Day tank DT1/HT1: Two days tanks are required. The day tank capacity must cover at least 4 hours/max. 24 hours full load operation of all consumers. An overflow system into the settling tanks and sufficient insulation are required. The tank should have a sludge space with a tank bottom inclination of preferably 10°, with sludge drain valves at the lowest point, and is to be equipped with heating coils.

#### **Guide values for temperatures**

| Fuel viscosity<br>cSt/50 °C | Tank temperature<br>[°C] |
|-----------------------------|--------------------------|
| 30 - 80                     | 70 - 80                  |
| 80 - 180                    | 80 - 90                  |
| > 180 - 700                 | max. 98                  |

#### I) Separators HS1/HS2:

Caterpillar Motoren recommends to install two selfcleaning separators. Design parameters as per supplier recommendation. Separating temperature 98 °C! Maker and type are to be advised by Caterpillar Motoren.

#### 3.6.4 Heavy fuel oil supply and booster standard module

(Pressurized System), up to IFO 700 for steam and thermaloil heating, up to IFO 180 for elect. heating

#### Technical specification of the main components:

- a) Primary filter FIL1 1 pc. Duplex strainer 540 microns
- b) Fuel pressure pumps, vertical installation SP1/SP2 2 pcs. Screw pumps with mechanical seal
- c) Pressure regulating system PCV1 1 pc. Pressure regulating valve
- d) Self-cleaning fine filter AF1 1 pc. Automatic self cleaning fine filter 10 microns absolut (without by-pass filter)
- e) Consumption measuring system FLOW1 1 pc. Flowmeter with local totalizer
- f) Mixing tank with accessories T1 1 pc. Pressure mixing tank

approx. 49 l volume up to 4,000 kW approx. 99 l volume from 4,001 - 20,000 kW (with quick-closing valve)

# g) Circulating pumps, vertical installation BP1/BP2

2 pcs. Screw pumps with mechanical seal

### h) Final preheater H1/H2

Control cabinet

2 pcs. Shell and tube heat exchangers

each 100 % (saturated 7 bar or thermal oil 180 °C) each 100 % electrical

• Heating medium control valve CV1

(steam/thermaloil) (electrical)

1 pc. Control valve with built-on positioning drive 1 pc. control cabinet for electr. preheater

#### Viscosity control system VA1

1 pc. Automatic viscosity measure and control system VAF

#### Cooler CL1

1 pc. Shell and tube heat exchanger for operating on MGO/MDO

# 3. Systems

#### Module controlled automatically with alarms and starters

Pressure pump starters with stand-by automatic Circulating pump starters with stand-by automatic PI-controller for viscosity controlling Starter for the viscosimeter Analog output signal 4 - 20 mA for viscosity

#### Alarms

Pressure pump stand-by start Low level in the mixing tank Circulating pump stand-by start Self cleaning fine filter clogged Viscosity alarm high/low The alarms with potential free contacts

Alarm cabinet with alarms to engine control room and connection possibility for remote start/stop and indicating lamp of fuel pressure and circulating pumps

#### **Performance and materials:**

The whole module is tubed and cabled up to the terminal strips in the electric switch boxes which are installed on the module. All necessary components like valves, pressure switches, thermometers, gauges etc. are included. The fuel oil pipes are equipped with trace heating (steam, thermaloil or electrical) where necessary.

The module will be tested hydrostatical and functional in the workshop without heating.

| Capacity [kW]   | Туре            | Weight [kg] | L x B x H [mm]        |
|-----------------|-----------------|-------------|-----------------------|
| 2,400 - 3,000   | Steam / Thermal | 1,800       | 2,800 x 1,200 x 2,000 |
|                 | Electric        | 1,700       |                       |
| 4,000 - 4,500   | Steam / Thermal | 2,600       | 3,000 x 1,200 x 2,100 |
|                 | Electric        | 2,400       |                       |
| 5,000 - 6,000   | Steam / Thermal | 3,200       | 3,200 x 1,300 x 2,100 |
|                 | Electric        | 3,000       |                       |
| 8,000 - 9,000   | Steam / Thermal | 3,600       | 3,400 x 1,400 x 2,100 |
|                 | Electric        | 3,200       |                       |
| 10,000 - 12,000 | Steam / Thermal | 4,000       | 3,600 x 1,400 x 2,100 |
| 13,400 - 16,000 | Steam / Thermal | 4,200       | 4,200 x 1,600 x 2,100 |
| 19,200 - 24,000 | Steam / Thermal | 5,400       | 5,000 x 1,700 x 2,100 |
| 25,600 - 32,000 | Steam / Thermal | 6,000       | 6,000 x 2,000 x 2,100 |

# 3. Systems

#### **Symbols**





#### **Symbols**



#### 3. **Systems**

### **Electric heated**



### **Symbols**

 $\bigcirc$ 

FLOW1 Flowmeter



#### 3.7 Lubricating oil system

The lubricating oil performs several basic functions:

- It cleans the engine by carrying dirt and wear particles until filters can extract and store them.
- It cools the engine by carrying heat away from the piston, cylinder walls, valves and cylinder heads to be dissipated in the engine oil cooler.
- It cushions the engines bearings from the shocks of cylinder firing.
- It lubricates the wear surfaces, reducing friction.
- It neutralizes the corrosive combustion products.
- It seals the engines metal surfaces from rust.

#### 3.7.1 Quality requirements of lubricating oil system

The viscosity class SAE 40 is required.

Wear and tear and thus the service life of the engine depends on the lube oil quality. Therefore high requirements are made for lubricants:

Constant uniform distribution of the additives at all operating conditions. Perfect cleaning (detergent effect) and dispersing power, prevention of deposits from the combustion process in the engine. Sufficient alkalinity in order to neutralize acid combustion residues. The TBN (Total Base Number) must be between 30 and 40 KOH/g at HFO operation. For MDO operation the TBN is 12 - 20 depending on sulphur content.

| Manufacturer               | Diesel oil/Marine-diesel<br>oil operation                                                         | Ι                     | II     | HFO operation                                                            | I                | II |
|----------------------------|---------------------------------------------------------------------------------------------------|-----------------------|--------|--------------------------------------------------------------------------|------------------|----|
| AGIP                       | DIESEL SIGMA S<br>CLADIUM 120                                                                     |                       | x<br>x | CLADIUM 300 S<br>CLADIUM 400 S                                           | x<br>x           |    |
| BP                         | ENERGOL HPDX 40<br>ENERGOL DS 3-154<br>ENERGOL IC-HFX 204<br>VANELLUS C3                          | X<br>X<br>X           | x      | ENERGOL IC-HFX 304<br>ENERGOL IC-HFX 404                                 | X<br>X           |    |
| CHEVRON, CALTEX,<br>TEXACO | DELO 1000 MARINE<br>TARO 12 XD<br>TARO 16 XD<br>TARO 20 DP<br>TARO 20 DPX                         | X<br>X<br>X<br>X<br>X |        | TARO 30 DP<br>TARO 40 XL<br>TARO 40 XLX                                  | x<br>x<br>x      |    |
| CASTROL                    | MARINE MLC<br>MXD 154<br>TLX PLUS 204                                                             | X<br>X<br>X           |        | TLX PLUS 304<br>TLX PLUS 404                                             | x<br>x           |    |
| ESSO                       | EXXMAR 12 TP<br>EXXMAR CM+<br>ESSOLUBE X 301                                                      | Х                     | x<br>x | EXXMAR 30 TP<br>EXXMAR 40 TP<br>EXXMAR 30 TP PLUS<br>EXXMAR 40 TP PLUS   | x<br>x<br>x      | х  |
| MOBIL                      | MOBILGARD 412<br>MOBILGARD ADL<br>MOBILGARD M 430<br>MOBILGARD 1-SHC <sup>1)</sup><br>DELVAC 1640 | x<br>x<br>x<br>x      | х      | MOBILGARD M 430<br>MOBILGARD M 440<br>MOBILGARD M50                      | x<br>x<br>x      |    |
| SHELL                      | GADINIA<br>GADINIA AL<br>ARGINA S<br>ARGINA T                                                     | X<br>X<br>X<br>X      |        | ARGINA T<br>ARGINA X                                                     | x<br>x           |    |
| TOTAL LUBMARINE            | RUBIA FP<br>DISOLA M 4015<br>AURELIA XL 4030<br>AURELIA TI 4030                                   | x<br>x<br>x           | Х      | AURELIA XL 4030<br>AURELIA XL 4040<br>AURELIA TI 4030<br>AURELIA TI 4040 | X<br>X<br>X<br>X |    |

The following oils were tested and approved by Caterpillar Motoren GmbH & Co. KG:

I Approved in operation

II Permitted for controlled use

When these lube oils are used, Caterpillar Motoren must be informed because at the moment there is insufficient experience available for MaK engines. Otherwise the warranty is invalid.

<sup>1)</sup> Synthetic oil with a high viscosity index (SAE 15 W/40). Only permitted if the oil inlet temperatures can be decreased by 5 - 10 °C:

# 3. Systems

#### 3.7.2 System diagram



#### **General notes:**

For location, dimensions and design (e.g. flexible connection) of the connecting points see engine installation drawing.

#### Notes:

- h Please refer to the measuring point list regarding design of the monitoring devices
- o See "crankcase ventilation" installation instructions 4-A-9570

#### **Connecting points:**

- C60 Separator connection, suction side or drain or filling pipe
- C61 Separator connection, delivery side or from bypass filter
- C65 Luboil filling
- C91 Crankcase ventilation to stack

#### Accessories and fittings:

- LF2 Self cleaning luboil filter
- LF4 Suction strainer
- LH1 Lube oil cooler
- LH2 Lube oil preheater
- LP1 Lube oil force pump
- LP5 Prelubrication pump LP9 Transfer pump (separator)
- LR1 Lube oil thermostat valve
- LR2 Oil pressure regulating valve
- LS1 Lube oil separator
- LT1 Lube oil sump tank

- LI Level indicator
- LSL Level switch low
- LSH Level switch high
- PDI Diff. pressure indicator
- PDSH Diff. pressure switch high
- PI Pressure indicator
- PS Pressure indicator
- PSL Pressure switch low
- PSLL Pressure switch low low
- PT Pressure transmitter
- TI Temperature indicator
- TSHH Temperature switch high
- TT Temperature transmitter (PT 100)

# 3. Systems

# 3.7.3 Lubricating oil system components

| a) Force pump (fitted) LP1:            | Gear pump                                                                                                                                    |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| b) Prelubrication pump (fitted) LP5:   | Delivery head 5 bar<br>Continuous lubrication is carried out with stopped<br>genset.<br>Starter to be supplied by the yard.                  |
| c) Stand-by force pump (separate) LP2: | <ul> <li>per engine according to classification society requirement</li> <li>screw type/gear type pump</li> </ul>                            |
| d) Strainer LF4:                       | Mesh size 2 - 3 mm                                                                                                                           |
| e) Self-cleaning filter (fitted) LF2:  | The self-cleaning filter protects the engine against dirt particals which may have accumulated in the oil tank.                              |
|                                        | The filter is fitted and replaces the duplex filter.<br>Separate self-cleaning filter as option possible.<br>Dimension see next page.        |
|                                        | Mesh size 30 µm (absolute), type 6.46 DN 100, make<br>Boll & Kirch. <b>Without</b> by-pass filter. <b>Without</b> flushing<br>oil treatment. |



# Self-cleaning filter separate LF2 (option)



| Engine         | 6/8/9 M 32 C |
|----------------|--------------|
| А              | 485          |
| В              | 200          |
| С              | 775          |
| E              | 245          |
| F              | 295          |
| S              | 400          |
| Х              | 180          |
| Y              | 180          |
| Weight<br>[kg] | 112          |

f) Cooler (separate) LH1:

А

**Option:** fitted on base frame Plate type (plates made of stainless steel)



#### g) Temperature controller (separate) LR1:

#### **Option:** fitted on baseframe P-controller with manual emergency adjustment



|            | Dimensions [mm] |     |     |     |     |      |
|------------|-----------------|-----|-----|-----|-----|------|
|            | DN              | D   | F   | G   | Н   | [kg] |
| 6 M 32 C   | 80              | 200 | 171 | 267 | 151 | 27   |
| 8/9 M 32 C | 100             | 220 | 217 | 403 | 167 | 47   |

#### h) Circulation tank LT1:

Located in the base frame, equipped with high/low level switch and level control stick.

#### i) Crankcase ventilation C91:

At engine 1 x DN 80. Approx. 1 m after the connection point has to enlarged to DN 125.

It must be equipped with a condensate trap and continuous drain. It has to be arranged separately for each genset. Crankcase pressure max. 150 Pa.

# 3. Systems

j) Separator;

treatment at MGO/MDO operation LS1:

**Required** with the following design:

- Separating temperature 85 95 °C
- Quantity to be cleaned three times/day
- Self cleaning type

 $V_{eff}$  [I/h] = 0.18 •  $P_{eng}$  [kW]

k) Separator; treatment at HFO operation LS1: **Required** with the following design:

- Separating temperature 95 °C
- Quantity to be cleaned five times/day
- Self cleaning type

$$V_{eff}$$
 [l/h] = 0.29 •  $P_{eng}$  [kW]

#### **3.7.4 Recommendation lubricating oil system**

For each engine a separate lube oil system is recommended.

Lube oil quantities/-change intervals:

The circulating quantity is approx. 1.1 l/kW output.

#### The change intervals depend on:

- fuel quality
- quality of lube oil treatment (filter, separator)
- engine load

By continuous checks of lube oil samples (decisive are the limit values as per "MaK Operating Media") an optimum condition can be reached.

#### External lubricating oil piping system information

After bending and welding all pipes must be cleaned by using approved accid cleaning process.

A proper inspection of the inner walls of the pipes is needed by our service engineers before starting the engine to ensure that no weld spatter, slag, rust and oxide remain.

#### **Expansion joints**

Pipe expansion joints are necessary in systems that convey high temperature commodities in this case hot oil. The bellows are designed to withstand the internal pressures of the pipe, but are flexible enough to accept the axial, lateral and angular deflections.

# 4. Connecting parts engine



# Fly wheel and flexible coupling

|          | Power | Speed | Nominal               | Type Vulkan Rato-DS |                  |                  | Weight |      |
|----------|-------|-------|-----------------------|---------------------|------------------|------------------|--------|------|
|          |       |       | torque of<br>coupling | d                   | L1 <sup>4)</sup> | L2 <sup>3)</sup> | 1)     | 2)   |
|          | [kW]  | [rpm] | [kNm]                 | [mm]                | [mm]             | [mm]             | [ka]   | [ka] |
| 6 M 32 C | 3,000 | 600   | 47.8                  | 1,010               | 495              | 300              | 381    | 465  |
| 8 M 32 C | 4,000 | 600   | 63.7                  | 1,010               | 495              | 300              | 381    | 465  |
| 9 M 32 C | 4,500 | 600   | 71.7                  | 1,070               | 530              | 310              | 464    | 556  |

<sup>1)</sup> without torsional limit device

- $^{\scriptscriptstyle 2)}$  with torsional limit device
- <sup>3)</sup> length of hub
- <sup>4)</sup> alignment control (recess depth 5 mm)

# 4. Connecting parts engine

#### 4.1 Data for torsional vibration calculation

To determine the location and resonance points of each engine and equipment Caterpillar Motoren GmbH & Co. KG calculates the torsional vibration behaviour of the engine, coupling and generators.

The classification societies require a complete Torsional Vibration Calculation.

To be able to provide a correct Torsional Vibration Calculation, we would like to ask you to fill in the documents in the appendix, according to your scope of supply.

Please send the completed data to your local dealer 6 months prior to the engine delivery at the latest.

For further information please compare point 13.6 of the appendix.

# 4. Connecting parts engine

#### 4.2 Resilient mounting of base frame

Engine and generator are rigidly connected with the base frame. The base frame is connected with the ship's foundation via rubber elements.

The ship's foundation does not require machining. Unevenness is to be compensated by design and thickness of the welded-on sheets in order to achieve a roughly even pressure on the rubber elements.

The rubber elements (height = 100 mm) are fastened to the ship's foundation via welded-on sheets (thickness about 30 mm) and shims for compensation of differences in height.

Further notes (inter alia regarding alignment) are given in the binding installation drawing. Transverse and longitudinal stoppers and welding sheets are to be provided by the shipyard.



### **Base frame foundation**

# 4. Connecting parts engine



# 4.3 Generators structural requirements for MaK diesel gensets M 32 C



- Mounting flap for anti-condensation heater above the mounts
- With air cooling the air outlet above the mounts
- The mounts are to be designed with 4 alignment screws
- Plain bearings must be removable without coupling removal

| Туре     | Stator<br>design | A max. | В     | С     | Ø D max. | Ød  | F   | H   | ØM | S min. |
|----------|------------------|--------|-------|-------|----------|-----|-----|-----|----|--------|
| 6 M 32 C |                  | 2,900  |       |       |          | 240 | 200 |     |    |        |
| 8 M 32 C | B 20             | 3,000  | 1,930 | 2,130 | 1,960    | 240 | 300 | 495 | 39 | 300    |
| 9 M 32 C |                  | 3,200  |       |       |          | 260 | 310 |     |    |        |

# 5. Installation and Arrangement

# 5.1 General installation aspect

Inclination angles of ships at which engine running must be possible:

| Rotation X-axis:                |         |
|---------------------------------|---------|
| Static: heel to each side:      | 15 °    |
| Dynamic: rolling to each side:  | 22.5 °  |
| Rotation Y-axis:                |         |
| Static: trim by head and stern: | 5°      |
| Dynamic: pitching:              | ± 7.5 ° |



#### 5. **Installation and Arrangement**

C81

#### System connections engine 5.2

#### **Starting Air**

C86 Connection, starting air

#### **Fuel Oil**

| C73    | Fuel inlet           |  |  |
|--------|----------------------|--|--|
| C75    | Connection, stand-by |  |  |
| pum    | р                    |  |  |
| C78    | Fuel outlet          |  |  |
| C80    | Drip fuel connection |  |  |
| C81    | Drip fuel connection |  |  |
| C81b   | Drip fuel connection |  |  |
| (filte | r pan)               |  |  |

# C22C61 C46a C60 C65 C19

Exhaust

C91a Exhaust gas outlet

#### **Cooling Water**

#### Cooling water outlet C19 oilcooler

- C22 Freshwater pump LT, inlet C28 Freshwater pump LT, outlet
- C32a/b Outlet/inlet heat
- recovery
- Ventilation connection C37

#### Lubricating oil

- C46a Suction side, stand-by force pump
- C58 Force pump, delivery side
- Separator, suction side C60
- C61 Separator, delivery side
- C65 Lube oil, filling socket
- Crankcase ventilation C91



# 5. Installation and Arrangement

# 

### 5.3 Space requirement for dismantling of charge air cooler and turbocharger cartridge

#### Charge air cooler cleaning

Cleaning is carried out with charge air cooler dismantled. A container to receive the cooler and cleaning liquid is to be supplied by the **yard**. Intensive cleaning is achieved by using ultra sonic vibrators.

#### Turbocharger dismantling

Removal of cartridge with compressor delivery casing after removal of air filter silencer.

|            | R [mm] | Weight [kg] |
|------------|--------|-------------|
| 6 M 32 C   | 850    | 360         |
| 8/9 M 32 C | 1,640  | 815         |

# 5. Installation and Arrangement

#### 5.4 Installation of flexible pipe connections

Flexible pipe connections become necessary to connect resilient mounted genset with external piping systems. These components have to compensate the dynamic movements of the genset relation to the external piping system.

The shipyard's pipe system must be exactly arranged so that the flanges or screw connections do fit without lateral or angular offset. It is recommended to adjust the final position of the pipe connections after engine alignment is completed.

It is important to support near as possible to the flex connection and stronger as normal. The pipes outside the flexible connection must be well fixed and clamped to prevent from vibrations, which could damage the flexible connections.

#### Installation of steel compensators

Steel compensators can compensate movements in line and transversal to their center line. They are not for compensating twisting movements. Compensators are very stiff against torsion.

It is very important that all steel compensators are not allowed to be installed on resilient mounted engines in vertical direction.

#### 5.5 Notes regarding installation exhaust system

- Arrangement of the first expansion joint directly on the transition pipe
- Arrangement of the first fixed point in the conduit directly after the expansion joint
- Drain opening to be provided (protection of turbocharger and engine against water)
- Each engine requires an eyhaust gas pipe (one common pipe for several engines is **not permissible**).

During commissioning and maintenance work, checking of the exhaust gas counter pressure by means of a temporarily connected measuring device may become necessary.

For this reason, a measuring socket is to be provided approx. 1 - 2 m after the exhaust gas outlet of the turbocharger at an easily acceptance place.

If it should be impossible to use standard transition piece supplied by Caterpillar Motoren, the weight of the transition piece manufactured by the shipyard must not exceed the weight of the standard transition piece. A drawing including the weight will then have to be submitted approval.

# 5. Installation and Arrangement

#### 5.6 Installation of crankcase ventilation at engine

Please consider for the piping of crankcase ventilation design criteria as follows:

- Outlet crankcase ventilation has to be arranged separately for each engine
- The pipes should run upwards
- A free ventilation under all trim conditions
- Avoiding of condensate backflow into crankcase
- Provide a permanent drain



#### Piping sizes for crankcase ventilation

| Engine type  | Engine connecting<br>point(s) | Main vent pipe | Collecting vent with<br>lubricating oil circulation<br>tank (observe class rules) |
|--------------|-------------------------------|----------------|-----------------------------------------------------------------------------------|
| 6/8/9 M 32 C | 1 x DN 80                     | 1 x DN 100     | DN 125                                                                            |

# 5. Installation and Arrangement

### 5.7 Lifting of engines

For the purpose of transport the genset is equipped with a lifting device which shall remain the property of Caterpillar Motoren. It has to be returned in a useable condition free of charge.



# 6. Control and monitoring system

### 6.1 Engine control panel



Detail x: Equipment for local engine control



#### **Control Panel**

# 6. Control and monitoring system

#### 6.2 Genset control


#### **Control and monitoring system** 6.

#### **Engine monitoring** 6.3



Detail x: Arrangement of terminal board box X55 / pressure switch



Pressure switch arrangement

# 6. Control and monitoring system

## 6.4 Measuring points

| Meas. Point<br>MODbus-<br>Address                           | Description                                                                                                                                                                                                                                                                               | Sensor<br>range                                                                  | Remarks                                                                                            |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| <b>1102</b><br><b>1105</b><br>30009                         | <b>1102</b> Lube oil pressure low - pre alarm shut down<br><b>1105</b> Lube oil pressure low - pre alarm shut down /<br>DICARE                                                                                                                                                            | 4-20 mA                                                                          | <b>1102</b><br>Activated at n > n full load<br>1 sensor 1102 + 1105                                |
| <b>1103</b><br>11195                                        | Lube oil pressure low - shut down                                                                                                                                                                                                                                                         | binary                                                                           | Activated at n > n full load                                                                       |
| <b>1106</b><br>10113                                        | Lube oil pressure low - shut down                                                                                                                                                                                                                                                         | binary                                                                           |                                                                                                    |
| <b>1112.1</b><br>10034<br><b>1112.2</b><br>10035            | Differential pressure lube oil automatic filter high<br>- pre alarm<br>Differential pressure lube oil automatic filter high - alarm                                                                                                                                                       | binary                                                                           | 1 evaluation unit for 1112.1/.2<br>Only existing, when<br>automatic filter is mounted<br>on engine |
| <b>1142</b><br>10116                                        | Pre lube oil pressure low - start interlock                                                                                                                                                                                                                                               | binary                                                                           |                                                                                                    |
| <b>1202</b><br>30010                                        | Lube oil temperature at engine inlet high - alarm                                                                                                                                                                                                                                         | PT 100                                                                           |                                                                                                    |
| <b>1203</b><br>30119                                        | Lube oil temperature at engine inlet high - shut down                                                                                                                                                                                                                                     | PT 100                                                                           |                                                                                                    |
| <b>1251</b><br>10046                                        | Oil mist detector VN115787 Plus                                                                                                                                                                                                                                                           |                                                                                  |                                                                                                    |
| 1251.1<br>10001<br>1251.2<br>1253<br>10112<br>9631<br>10047 | <ul> <li>1251 Oil mist concentration in crankcase high - alarm</li> <li>1251.1 Oil mist concentration in crankcase high - pre alarm</li> <li>1251.2 Opacity</li> <li>1253 Oil mist concentration in crankcase high - shut down</li> <li>9631 Oil mist detector failure - alarm</li> </ul> | 1251: binary<br>1251.1: binary<br>1251.2: 4-20mA<br>1253: binary<br>9631: binary | 1 evaluation unit for 1251,<br>1253, 9631<br><b>1251.1</b> (70 % from <b>1251</b> )                |
| <b>1311</b><br>10034                                        | Lube oil level low - alarm                                                                                                                                                                                                                                                                | binary                                                                           |                                                                                                    |
| <b>1312</b><br>10035                                        | Lube oil level high - alarm                                                                                                                                                                                                                                                               | binary                                                                           |                                                                                                    |
| <b>2102</b><br>30246                                        | Cooling water pressure HT at engine inlet low - alarm                                                                                                                                                                                                                                     | 4-20 mA                                                                          | * 40 kPa below operating<br>pressure                                                               |
| <b>2103</b><br>30246                                        | Cooling water pressure HT at engine inlet low - shut down                                                                                                                                                                                                                                 | binary                                                                           | * 60 kPa below operating<br>pressure<br>stop delay: 20s                                            |
| <b>2112</b><br>30250                                        | Cooling water pressure LT at engine outlet low - alarm                                                                                                                                                                                                                                    | 4-20 mA                                                                          | * 40 kPa below operating<br>pressure                                                               |
| <b>2201</b><br>30013                                        | Cooling water temperature HT at engine inlet low - alarm                                                                                                                                                                                                                                  | PT 100                                                                           |                                                                                                    |

# 6. Control and monitoring system

| Meas. Point<br>MODbus-<br>Address | Description                                                                                                                | Sensor<br>range | Remarks                                                         |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------|
| <b>2211</b><br>30014              | Cooling water temperature HT at engine outlet high - alarm                                                                 | PT 100          |                                                                 |
| <b>2213</b><br>30120              | Cooling water temperature HT at engine outlet high - shut down                                                             | PT 100          |                                                                 |
| <b>2229</b><br>30015              | Cooling water temperature LT at engine inlet high - alarm                                                                  | PT 100          |                                                                 |
| 2321                              | Oil ingress in fresh water at cooler outlet - alarm                                                                        | binary          | Option for DE-drive only external signal                        |
| <b>5102</b><br>30021              | Fuel oil pressure at engine inlet low - alarm                                                                              | 4-20 mA         |                                                                 |
| 5105                              | Fuel oil pressure at pressure pump low - alarm                                                                             | binary          | Starting stand-by pump from pump control                        |
| <b>5111</b><br>10036              | Differential pressure fuel oil filter high - alarm                                                                         | binary          |                                                                 |
| 5112                              | Fuel oil differential pressure at fuel oil filter high - alarm                                                             | binary          | External signal                                                 |
| 5115                              | <b>5115</b> Fuel oil differential pressure at automatic fuel oil filter low                                                |                 | Starting stand-by pump<br>from pump control, external<br>signal |
| 5116                              | Fuel oil differential pressure at circulating pump low - alarm                                                             | binary          |                                                                 |
| <b>5201/5202*</b><br>30022        | <b>5201</b> Fuel oil temperature at engine inlet low - alarm <b>5202</b> Fuel oil temperature at engine inlet high - alarm | PT 100          | 1 sensor for 5201 + 5202*<br>* Not in use with HFO              |
| <b>5206</b><br>30090              | Fuel oil temperature after viscomat - DICARE                                                                               | PT 100          | External sensor                                                 |
| 5251/5252                         | <b>5251</b> Fuel oil viscosity at engine inlet high - alarm <b>5252</b> Fuel oil viscosity at engine inlet low - alarm     | binary          | 1 sensor for 5251 + 5252<br>External signal                     |
| <b>5253</b><br>30089              | Fuel oil viscosity at viscomat - DICARE                                                                                    | 4-20 mA         | Only if DICARE is available<br>External signal                  |
| <b>5301</b><br>10003              | Leakage oil niveau at engine high - alarm                                                                                  | binary          |                                                                 |
| 5333                              | Fuel oil level mixing tank low - alarm                                                                                     | binary          | in use with HFO<br>External signal                              |
| <b>6101</b><br>30032              | Starting air at engine inlet low - alarm                                                                                   | 4-20 mA         |                                                                 |
| <b>6105</b><br>10048              | Stopping air pressure at engine low - alarm                                                                                | binary          | Alarm delay: 2s                                                 |
| <b>6181</b><br>30019              | Intake air pressure in engine room - DICARE                                                                                | 4-20 mA         | Only for DICARE                                                 |

# 6. Control and monitoring system

| Meas. Point<br>MODbus-<br>Address | Description                                                          | Sensor<br>range  | Remarks                                       |  |
|-----------------------------------|----------------------------------------------------------------------|------------------|-----------------------------------------------|--|
| <b>7109</b><br>30248              | Charge air pressure at engine inlet - Indication                     | 4-20 mA          | 4-20 mA for FCT                               |  |
| <b>7201</b><br>30016              | Charge air temperature at engine inlet high - alarm                  | PT 100           |                                               |  |
| <b>7206</b><br>30020              | Intake air temperature at turbocharger inlet - DICARE                | PT 100           |                                               |  |
| <b>7301</b><br>10004              | Condense water in charge air canal high                              | binary           |                                               |  |
| <b>7307</b><br>30018              | Charge air diff. pressure at charge air cooler - DICARE              | 4-20 mA          | Only for DICARE                               |  |
| <b>7309</b><br>30087              | Charge air temperature at charge air cooler inlet<br>- DICARE        | NiCr-Ni<br>(mV)  | Only for DICARE                               |  |
| <b>8211.1</b><br>30073            | Exhaust gas temperature after cylinder 1 high high<br>- shut down    | NiCr-Ni<br>(mV)  | Load depended alarm with delay: 16 seconds    |  |
| <b>8211.2</b><br>30074            | Exhaust gas temperature after cylinder 2 high high<br>- shut down    | ONiCr-Ni<br>(mV) | Load depended alarm with delay: 16 seconds    |  |
| <b>8211.3</b><br>30075            | Exhaust gas temperature after cylinder 3 high high<br>- shut down    | NiCr-Ni<br>(mV)  | Load depended alarm with delay: 16 seconds    |  |
| <b>8211.4</b><br>30076            | Exhaust gas temperature after cylinder 4 high high<br>- shut down    | NiCr-Ni<br>(mV)  | Load depended alarm with<br>delay: 16 seconds |  |
| <b>8211.5</b><br>30077            | Exhaust gas temperature after cylinder 5 high high<br>- shut down    | NiCr-Ni<br>(mV)  | Load depended alarm with<br>delay: 16 seconds |  |
| <b>8211.6</b><br>30078            | Exhaust gas temperature after cylinder 6 high high<br>- shut down    | NiCr-Ni<br>(mV)  | Load depended alarm with delay: 16 seconds    |  |
| <b>8211.7</b><br>30079            | Exhaust gas temperature after cylinder 7 high high<br>- shut down    | NiCr-Ni<br>(mV)  | Load depended alarm with delay: 16 seconds    |  |
| <b>8211.8</b><br>30080            | Exhaust gas temperature after cylinder 8 high high<br>- shut down    | NiCr-Ni<br>(mV)  | Load depended alarm with delay: 16 seconds    |  |
| <b>8211.9</b><br>30081            | Exhaust gas temperature after cylinder 9 high high<br>- shut down    | NiCr-Ni<br>(mV)  | Load depended alarm with delay: 16 seconds    |  |
| <b>8221</b><br>30082              | Exhaust gas temperature at turbocharger outlet high high - shut down | NiCr-Ni<br>(mV)  | Load depended alarm with delay: 16 seconds    |  |
| <b>8231</b><br>30083              | Exhaust gas temperature at turbocharger inlet - alarm                | NiCr-Ni<br>(mV)  |                                               |  |
| 9404                              | Overspeed - alarm                                                    | binary           | 1,15 x n rated                                |  |
| 9409                              | Engine running signal                                                | binary           | For working hour meter                        |  |
| <b>9419</b><br>30050              | Engine speed signal                                                  | 4-20 mA          | 586,7 Hz = 0-800 rpm FCT                      |  |

# 6. Control and monitoring system

| Meas. Point<br>MODbus-<br>Address | Description                                               | Sensor<br>range     | Remarks                                              |
|-----------------------------------|-----------------------------------------------------------|---------------------|------------------------------------------------------|
| <b>9429</b><br>30042              | Turbine speed high - alarm*<br>Turbine speed - Indication | 4-20 mA /<br>0-10 V | *DNV<br>4-20 mA for FCT                              |
| <b>9503</b><br>10222              | Control lever at fuel rack - stop position                | binary              |                                                      |
| <b>9509</b><br>30031              | Fuel rack signal (engine load)                            | 4-20 mA             |                                                      |
| <b>9561</b><br>10117              | Turning gear engaged - starting interlock                 | binary              |                                                      |
| <b>9602</b><br>10005              | CANbus failure - alarm                                    | binary              |                                                      |
| 9615                              | Failure electronic speed governor MINOR-alarm             | binary              | With electronic speed governor only, external signal |
| 9616                              | Failure electronic speed governor MAJOR-alarm             | binary              | With electronic speed governor only, external signal |
| 9671.1                            | Automatic stop failure - alarm                            | binary              |                                                      |
| 9671.2                            | Overspeed failure - alarm                                 | binary              |                                                      |
| 9671.3                            | Emergency stop failure - alarm                            | binary              |                                                      |
| 9674                              | Auto stop / PLC A01 common - shut down                    | binary              |                                                      |
| 9675                              | Emergency stop - alarm                                    | binary              |                                                      |
| 9717                              | Voltage failure terminal set X55 (engine control)         | binary              |                                                      |
| 9751                              | Voltage failure temperature controller                    | binary              | Depending of system application, external signal     |
| 9761                              | Voltage failure fuel oil viscosity controller             | binary              | Depending of system application, external signal     |
| 9771                              | Voltage failure fresh water pre heater                    | binary              | Depending of system<br>application, external signal  |
| 9775                              | Voltage failure fuel oil pre heater                       | binary              | Depending of system<br>application, external signal  |
| <b>9836.1</b><br>10107            | Sensor / isolation fault A01.1 - alarm                    | binary              |                                                      |
| <b>9836.2</b><br>10007            | Sensor / isolation fault A03.1 - alarm                    | binary              |                                                      |
| <b>9962.1</b><br>30108            | Common alarm A01.1 - alarm                                | binary              |                                                      |
| <b>9962.2</b>                     | Common alarm A03.1 - alarm                                | binary              |                                                      |

## 6. Control and monitoring system

#### optional speed \*) optinally in Caterpillar Motoren scope of supply р 0-10V DC optional) Engine speed **Diesel Engine** nonitoring system Exhaust gas temp. Alarm system / Remote indicators **Analogue Sensors** Am02-4 (optional) snqgOW Am02-4 Remote indicators 96 x 96mm optionally) Î X $\times$ Exhaust gas temperature after cylinder (digital valve) -resh water temperature at engine outlet (HT circuit) -resh water temperature at engine inlet (HT circuit) Exhaust gas temperature before/after turbocharger Charge air temperature cooler inlet (digital valve) -uel rack position (mean injection pump rack) Installed at the engine (gauge board) nstalled at the engine Fresh water temperature cooler outlet Fresh water temperature cooler inlet ube oil differential pressure at filter <sup>-</sup>resh water temperature (LT circuit) oil differential pressure at filter ube oil temperature at engine inlet Charge air temperature engine inlet Charge air temperature cooler inlet Local indicators -uel oil temperature at engine inlet Charge air pressure cooler outlet -resh water pressure (HT circuit) <sup>-</sup>resh water pressure (LT circuit) Start air pressure Lube oil pressure -uel oil pressure Engine speed (digital valve) Fuel

### 6.5 Local and remote indicators

M 32 C Generator Set - 07.2011

144 x 144 mm possible

## 6. Control and monitoring system

### 6.6 LESS: Large Engine Safety System



#### Engine control boxes include

- Engine protection system
- Speed switch unit
- Start-/Stop-control
- Alarm display (LED)
- Graphic display (settings)
- Engine monitoring
- MODbus output to alarm system (MODbus RTU protocol RS 482 / 422)
- Data transfer via CANbus to DICARE-PC (optional)
- Exhaust gas temperature mean value system (optional)

#### System data

Inputs:

4 fixed automatic shut down + overspeed inputs
4 manual emergency stop inputs
16 configurable inputs for shutdown, load reduce request or start interlock
2 separate override inputs
1 remote reset input
All inputs are wire break- and short circuit monitored.

Outputs: 4 x 2 adjustable speed contacts 3 fuel setting signals (1 x 0-10V DC, 2 x 4-20 mA) 1 overload contact at rated speed 4 speed signals (1 x pulse, 1 x 0-10V DC, 2 x 4-20 mA or 0-10V DC → configurable)

## 6. Control and monitoring system

### 6.6 **LESS**





## 7. Diagnostic trending monitoring - DICARE

With MaK DICARE, you can have an expert aboard at all times, ready to serve your needs. The latest, completely revised version combines well-established features with faster signal processing and improved usability, based on common industry standards.

Cat and MaK engines with MaK DICARE remote engine monitoring software provide reliable, conditionspecific maintenance suggestions. DICARE continually compares current engine condition to desired state and tells you when maintenance is required. You get the diagnostics you need in easy-tounderstand words and graphics so you can take action to keep your engines running strong. DICARE is only available for medium-speed engines not for high-speed engines.

About 700 MaK engines worldwide, on vessels and in power stations ashore, are currently supervised with DICARE. Malfunctions are indicated immediately and at a glance, taking into account empirical data, plausibility considerations, and built-in expertise from decades of MaK diesel engine design. For ease of use, the initial report is subdivided into the diagnostic sectors of exhaust gas, turbocharger, fuel oil, lube oil, and cooling water, using a simple color-coding of regular versus irregular values. In a second step, the complete set of measured values and detailed troubleshooting instructions can be displayed, also with recommended actions priority-coded.

Special attention is placed on monitoring the following criteria:

- Overall temperature levels to identify thermal overload at an early stage.
- Intake air pressure and temperature to identify performance drops due to fouling or wear.
- Charge air pressure, temperature and dew point to identify fouling or misadjustment.
- Fuel temperature and viscosity to identify any malfunction of the viscosity control unit.
- Fuel rack position and power output to identify injection pump wear.
- Lube oil consumption to identify any possible wear.
- Cooling water pressure and temperature for optimum operation.
- Exhaust gas temperatures to identify deviations in the fuel or air system at an early stage.



# 7. Diagnostic trending monitoring - DICARE

## Transmitter for DICARE ON-LINE M 32 C CANbus

| Designation                                                      | Meas. point no.<br>CM |
|------------------------------------------------------------------|-----------------------|
| Fuel viscosity                                                   | 5253                  |
| Fuel temperature after viscomat                                  | 5206                  |
| Fuel temperature at engine inlet                                 | 5201                  |
| Injection pump rack position                                     | 9509                  |
| Lube oil pressure                                                | 1105                  |
| Lube oil temperature at engine inlet                             | 1202                  |
| Freshwater pressure HT                                           | 2102                  |
| Freshwater temperature at engine inlet HT                        | 2201                  |
| Freshwater temperature at engine outlet HT                       | 2211                  |
| Differential pressure charge air cooler                          | 7307                  |
| Intake air pressure                                              | 6181                  |
| Intake air pressure before turbocharger                          | 7206                  |
| Charge air pressure after intercooler                            | 7109                  |
| Charge air temperature before intercooler                        | 7309                  |
| Charge air temperature at engine inlet                           | 7201                  |
| Exhaust gas temperature for each cylinder and after turbocharger | 8211/8221             |
| Exhaust gas temperature before turbocharger                      | 8231                  |
| Engine speed                                                     | 9419                  |
| Turbocharger speed                                               | 9429                  |
| Service hour counter (manual input)                              | 9409                  |

## 8. Engine acceptance test

#### Standard acceptance test run

The acceptance test run is carried out on the testbed with customary equipment and auxiliaries using exclusively MDO and under the respective ambient conditions of the testbed. During this test run the fuel rack will be blocked at the contractual output value. In case of deviations from the contractual ambient conditions the fuel consumption will be converted to standard reference conditions.

The engine will be run at the following load stages acc. to the rules of the classification societies. After reaching steady state condition of pressures and temperatures these will be recorded and registered acc. to the form sheet of the acceptance test certificate:

- with puric ohmic load (cos  $\rho = 1$ )
- load application acc. to ISO 8528
- without parallel operation

| Load [%] | Duration [min] |
|----------|----------------|
| 50       | 30             |
| 85       | 30             |
| 100      | 60             |
| 110      | 30             |

#### Additional functional tests

In addition to the acceptance test run the following functional test will be carried out:

- governor test
- overspeed test
- emergency shut-down via minimum oil pressure
- start/stop via central engine control
- starting trials up to a minimum air pressure of 10 bar
- measurement of crank web deflection (cold/warm condition)

After the acceptance **main running gear, camshaft drive and timing gear train** will be inspected through the opened covers. Individual inspection of special engine components such as a piston or bearings is not intended, because such inspections are carried out by the classification societies at intervals on series engines.

**Engine movement** due to vibration referred to the global vibration characteristics of the engine:

The basis for assessing vibration severity are the guidelines ISO 10816-6.

According to these guideline the MaK engine will be assigned to vibration severity grade 28, class 5. On the engine block the following values will not be exceeded:

| Displacement           | $S_{_{\mathrm{eff}}}$ | < 0.448 mm              | f >   | 2 Hz <   | 10 Hz   |
|------------------------|-----------------------|-------------------------|-------|----------|---------|
| Vibration velocity     | V <sub>eff</sub>      | < 28.2 mm/s             | f >   | 10 Hz <  | 250 Hz  |
| Vibration acceleration | a <sub>eff</sub>      | < 44.2 m/s <sup>2</sup> | f > 2 | 250 Hz < | 1000 Hz |

## 9. <u>Engine Interational Air Pollution Prevention Certificate</u>

The MARPOL Diplomatic Conference has agreed about a limitation of  $NO_x$  emissions, referred to as Annex VI to Marpol 73/78.

When testing the engine for  $NO_x$  emissions, the reference fuel is Marine Diesel Oil (Distillate) and the test is performed according to ISO 8178 test cycles:

|                  | Test cycle type E2 |       |       |       | Test cycle type D2 |       |       |       |       |
|------------------|--------------------|-------|-------|-------|--------------------|-------|-------|-------|-------|
| Speed            | 100 %              | 100 % | 100 % | 100 % | 100 %              | 100 % | 100 % | 100 % | 100 % |
| Power            | 100 %              | 75 %  | 50 %  | 25 %  | 100 %              | 75 %  | 50 %  | 25 %  | 10 %  |
| Weighting factor | 0.2                | 0.5   | 0.15  | 0.15  | 0.05               | 0.25  | 0.3   | 0.3   | 0.1   |

Subsequently, the  $NO_x$  value has to be calculated using different weighting factors for different loads that have been corrected to ISO 8178 conditions.

An NO<sub>x</sub> emission evidence will be issued for each engine showing that the engine complies with the regulation. The evidence will come as EAPP (Engine Air Pollution Prevention) Statement of Compliance, EAPP (Engine Air Pollution Prevention) Document of Compliance or EIAPP (Engine International Air Pollution Prevention) Certificate according to the authorization by the flag state and related technical file. For the most part on basis of an EAPP Statement of Compliance or an EAPP Document of Compliance an EIAPP certificate can be applied for.

According to IMO regulations, a Technical File shall be made for each engine. This Technical File contains information about the components affecting  $NO_x$  emissions, and each critical component is marked with a special IMO number. Such critical components are piston, cylinder head, injection nozzle (element), camshaft section, fuel injection pump, turbocharger and charge air cooler. (For Common Rail engines the controller and the software are defined as  $NO_x$  relevant components instead of the injection pump.) The allowable setting values and parameters for running the engine are also specified in the Technical File.

The marked components can later, on-board the ship, be easily identified by the surveyor and thus an IAPP (International Air Pollution Prevention) certificate for the ship can be issued on basis of the EIAPP certificate and the on-board inspection.

## 10. Painting/Preservation

#### **Inside preservation**

#### N 576-3.3

Up to 1 year, engine protected from moisture.

• Main running gear and internal mechanics

#### **Outside preservation**

#### N 576-3.1 - Tectyl light

Europe Storage in the open, protected from moisture, up to 1 year

Appearance of the engine:

- Castings with red oxide antirust paint
- Pipes and machined surfaces left as bare metal
- Attached components with colours of the makers

#### N 576-3.2 - Tectyl heavy-duty

Overseas Storage in the open, protected from moisture, up to 1 year

Appearance of the engine:

- Castings with red oxide antirust paint
- Pipes and machined surfaces left as bare metal
- Attached components with colours of the makers

#### N 576-4.1 - Clear Varnish

Clear varnish painting is applicable within Europe for land transportation with protection from moisture. It is furthermore applicable for storage in a dry and tempered atmosphere.

Clear varnish painting is not permissible for:

- Sea transportation of engines
- Storage of engines in the open, even if they are covered with tarpaulin

#### VCI packaging as per N 576-5.2 is always required!

Durability and effectiveness are dependent on proper packing, transportation, and storage, i.e. the engine must be protected from moisture, the VCI foil must not be torn or destroyed.

Checks are to be carried out at regular intervals.

If the above requirements are not met, all warranty claims in connection with corrosion damages shall be excluded.

## 10. Painting/Preservation

Appearance of the engine:

- Catings with red oxide antirust paint
- Pipes and machined surfaces left as bare metal
- Attached components with colours of the makers
- Surfaces sealed with clear varnish
- Bare metal surfaces with light preservation

#### N 576-4.3 - Painting

- No VCI packaging: Short-term storage in the open, protected from moisture, max. 4 weeks
- With VCI packaging: Storage in the open, protected from moisture, up to 1 year

Appearance of the engine:

- Surfaces mostly painted with varnish
- Bare metal surfaces provided with light or heavy-duty preservation

#### N 576-5.2 - VCI packaging

Storage in the open, protected from moisture, up to 1 year.

Applies for engines with painting as per application groups N 576-4.1 to -4.4

Does not apply for engines with Tectyl outside preservation as per application groups N 576-3.1 and -3.2.

Description:

 Engine completely wrapped in VCI air cushion foil, with inserted VCI-impregnated flexible PU-foam mats.

#### N 576-5.2 Suppl. 1 - Information panel for VCI preservation and inspection

Applies for all engines with VCI packaging as per application group N 576-5.2.

**Description**:

- This panel provides information on the kind of initial preservation and instructions for inspection.
- Arranged on the transport frame on each side so as to be easily visible.

#### N 576-6.1 - Corrosion Protection Period, Check, and Represervation

Applies to all engines with inside and outside storage

Description:

• Definitions of corrosion protection period, check, and represervation

# **11. Engine parts**

Cylinder head, Weight 315 kg



Piston, Weight 150 kg



Cylinder liner, Weight 280 kg

### Connecting rod, Weight 236 kg





## 12. Flexible Camshaft Technology - FCT

Building upon the Emission Reduction System integration concept, FCT achieves synergy between flexible fuel systems and advanced air systems with maximum utilization of the current engine design. While maintaining high fuel injection pressure over the whole operating range, fuel injection and inlet valve timing are load controlled and influenced by a lever shaft which affects injection timing/pressure and inlet valve events. Valve timing changes at part load to raise effective compression and enhance complete combustion. In addition, shifting the relative position of the lever to the fuel cam increases injection pressure, producing a finer atomization of fuel in a load range where it would otherwise be difficult to control smoke.



M 32 C constant speed



M 32 C CPP/combinator mode









schematic diagram

## **13. Cat Common Rail**

### 13.1 Fuel System



From its introduction the MaK long-stroke generation of main diesel engines has been recognized for good performance and reasonable fuel consumption, alongside outstanding reliability and long component life. MaK engines are compliant with current emission regulations without the need for additional aftertreatment. To fulfil the upcoming emission legislations the development of new combustion process supporting technologies is necessary.

Caterpillar has made a huge investment to develop an emission reduction technology now marketed as ACERT® Technology for Caterpillar high-speed engines. After a successful demonstration in the on-highway high-speed engines, Caterpillar will now embark on a stepwise migration of selected elements of ACERT® Technology across the entire product line and range of applications. The broad range of Caterpillar's marine program calls for a differentiated approach.



## **13. Cat Common Rail**

#### Key criteria are:

- Prevailing emission limits for the respective power range and timing of their introduction.
- Customer expectations in terms of engine performance, maintenance practices, fuel quality and mode of operation.

By adopting well proven elements of this technology for medium-speed engines, it is our goal to meet and exceed customer expectations by maximizing product value through:

- Superior reliability in heavy fuel operation.
- Best fuel efficiency in its class.
- Lowest engine emissions with minimum additional complexity.

Keeping in mind the high reliability expectations of customers, Caterpillar decided to adopt a two step approach providing the most effective solutions with lowest complexity.

Flexible Camshaft Technology (FCT) has been developed and put into production. The next milestone in emissions technology is a fully flexible fuel system suitable for HFO, MDO and DO, called the Cat Common Rail (Cat CR) fuel system. Cat Common Rail is considered one major building block towards low emissions, high performance and highest customer value.

#### The goals are:

- Invisible smoke under all engine operating conditions.
- Reduce emissions beyond current and future IMO regulations, offering an attractive technology for emissions sensitive areas.
- Maintain or improve engine performance by taking advantage of the capabilities and benefits of a fully flexible fuel system.
- Continue to meet the level of reliability in heavy fuel operation expected by our marine customers

#### 13.2 Technology

Caterpillar has chosen "inside the engine" measures as the technology with the highest customer value. In combination with the long-stroke concept and high performance air systems the Cat Common Rail (Cat CR) fuel system is the most effective technology to meet emission regulations and customer expectations.

#### The key features of the Cat Common Rail technology are:

- Well adapted injection pressure over the entire engine operating range.
- Fully flexible fuel injection system enabling optimized emissions and engine performance.
- Suitable for HFO, MDO and DO.
- 100% retrofittable system.

## **13. Cat Common Rail**

### 13.2.1 Cat CR System

The main components of the Cat Common Rail fuel system are a high pressure (HP) pump, rail, injector and electronics. Caterpillar's broad experience with electronically controlled engines, range of product lines and in-house design and analysis expertise allow for a unique system approach. All components are developed under Caterpillar design control.

In addition Caterpillar's expertise in electronics is a major asset to the Cat Common Rail technology.

### 13.2.2 Safety Concept

Safety considerations and high customer value were the main focus throughout the development, resulting in a state-of-the-art design with the following features:

- Two high pressure pumps for redundancy.
- Double-walled lines and rails.

Furthermore, redundant speed pick-ups and pressure sensors, a safety gear between pump and engine, a pressure relief valve and flow limiters all increase operational safety.

### 13.2.3 High pressure pump

Two high pressure pumps deliver the required amount of fuel to the rail and provide the desired rail pressure in closed loop control. The pump itself is based on a proven design and has been modified for HFO operation. By having two pumps for all in-line engines the amount of HP connections and components is drastically reduced and thus increases reliability. The inlet metering control of the pump ensures a high pump efficiency.

#### The key features are:

- Two pumps for redundancy.
- Inlet metering control.
- Well adapted injection pressure over a wide operating range.
- Closed loop control of rail pressure.

#### 13.2.4 Rail

The double-walled rails are pressurized and act as an accumulator, with one rail segment feeding fuel to three injectors, i. e. a nine cylinder engine has only three rail segments, an eight cylinder engine has two rail segments, each feeding four injectors. This layout reduces the number of parts and the number of high pressure connections. Flow limiters prevent the cylinders from overfueling; a safety valve acts as pressure relief in case of an unwanted overpressurized rail.

## **13. Cat Common Rail**

### 13.2.5 Injector

Caterpillar has chosen a simple and robust approach by using the actual fuel as control fluid, thereby eliminating the need for a separate control fluid system.

The injector nozzle is cooled by lube oil, a typical feature for heavy fuel operation. For the Cat CR injector, the lube oil circuit has been extended to provide cooling to the electrical components within the injector, thereby increasing the lifetime.

#### The injector design is simple, robust and compact; the key features are:

- Electronically controlled.
- Flexible injection timing and duration.
- Capability of multi shot injections.

### **13.2.6 Electronics**

The key component is the Caterpillar A4E4 (or ADEM<sup>™</sup>) Electronic Control Module (ECM). The ECM acts as the brain of the Cat Common Rail fuel system. Pioneered by Caterpillar 20 years ago, the ADEM<sup>™</sup> controller coordinates and enhances fuel delivery, air supply and other engine functions to maximize overall performance and reduce emissions output.

Having in-house expertise for core electronic components and software puts Caterpillar in a unique position and allows for an advantageous systems approach.

Based on existing software and engine control strategies, the specific needs of heavy fuel burning engines and applications can be easily adopted. Depending on engine type, application and boundary conditions, a tailor made version allows for optimal operation.

he engine protection system operates independently of the engine control system and has its own independent sensor equipment. This ensures that engine operation is monitored independently of other control systems.

The ECM functions can be divided into a core system and a performance system.

#### The core system consists of:

- Control device A4E4.
- One crankshaft speed pick-up.
- Two high-pressure sensors.
- Two inlet metering valves
- Injectors.

The performance system ensures optimal engine settings under all operating conditions, using information like exhaust gas temperature, charge air pressure, ambient conditions and lube oil temperature.

## 13. Cat Common Rail



### 13.3 The Benefits

With Cat Common Rail, the injection pressure is independent from load and speed. Utilizing injection maps the injection characteristics are optimized for every engine operating point.

For areas that are especially emissions-sensitive, soot emissions at low engine load remain well below the visibility limit. Furthermore, during normal load operation  $NO_x$  emissions can be reduced without sacrificing fuel consumption. In general, the Cat Common Rail fuel system enables vessel operation without visible soot throughout the whole operating range.

In addition to that, the fuel system is capable of multiple injection. Multiple injection allows for optimal combustion and low emissions at all loads. Characteristic of Cat Common Rail is the approach of using the fuel (whether it's heavy fuel oil, marine diesel oil or diesel oil) as the control fluid for the injector, thus avoiding the added complexity of a separate control fluid system.

During the development, the retrofit aspect of the complete system has been emphasized. As a result, the Cat Common Rail fuel system can be retrofitted to existing M 32 C engines. This means increased customer value to reach future environmental regulations.

## 14. Appendix

### 14.1 Exhaust system

### 14.1.1 Resistance in exhaust gas piping



#### Example (based on diagram data A to E):

| t             | = 335 °C, G = 25,000 kg/h                     | t           | = Ex |
|---------------|-----------------------------------------------|-------------|------|
| 1             | = 15 m straight pipelength, d = 700 mm        | G           | = Ex |
| 3 off 9       | 0° bent R/d = 1.5                             | $\Delta p$  | = Re |
| 1 off 4       | 5° bent R/d = 1.5                             | d           | = In |
| $\Delta Pg =$ | ?                                             | w           | = Ga |
|               |                                               | I           | = St |
| Δp            | = 0.83 mm WC/m                                | Ľ           | = Sp |
| Ľ             | = 3 • 11 m + 5.5 m                            | L           | = Ef |
| L             | = I + L' = 15 m + 38.5 m = 53.5 m             | $\Delta Pg$ | = To |
| ∆Pg           | = ∆p • L = 0.83 mm WC/m • 53.5 m = 44.4 mm WC | -           |      |

|   | = Exhaust gas temperature            | (°C)      |
|---|--------------------------------------|-----------|
|   | = Exhaust gas massflow               | (kg/h)    |
|   | = Resistance/m pipe length           | (mm WC/m) |
|   | = Inner pipe diameter                | (mm)      |
|   | = Gas velocity                       | (m/s)     |
|   | = Straight pipe length               | (m)       |
|   | = Spare pipe length of 90° bent pipe | (m)       |
|   | = Effective substitute pipe length   | (m)       |
| g | = Total resistance                   | (mm WC)   |
|   |                                      |           |

# 14. Appendix

### 14.1.2 Exhaust data (preliminary)

| Tolerance:            | 5 %   |
|-----------------------|-------|
| Atmospheric pressure: | 1 bar |
| Relative humidity:    | 60 %  |
| Constant speed        |       |

#### Intake air temperature:

25 °C

|            | Output<br>[kW] | ● Output %<br>● [kg/h]<br>● [°C] |        |        |        |        |                                                            |  |  |
|------------|----------------|----------------------------------|--------|--------|--------|--------|------------------------------------------------------------|--|--|
|            |                | 100                              | 90     | 80     | 70     | 60     | 50                                                         |  |  |
| 0 14 00 0  | 2 000          | 21,029                           | 19,267 | 17,493 | 15,719 | 13,610 | 11,501                                                     |  |  |
| 0 101 32 0 | 3,000          | 302                              | 300    | 300    | 300    | 315    | 605013,61011,50131533117,50014,62031733221,16017,940295314 |  |  |
| 8 M 32 C   | 1 000          | 27,345                           | 25,475 | 23,100 | 20,477 | 17,500 | 14,620                                                     |  |  |
|            | 4,000          | 314                              | 308    | 300    | 303    | 317    | 332                                                        |  |  |
| 9 M 32 C   | 1 500          | 32,000                           | 29,933 | 27,865 | 24,380 | 21,160 | 17,940                                                     |  |  |
|            | 4,000          | 307                              | 295    | 285    | 285    | 295    | 314                                                        |  |  |

#### Intake air temperature:

45 °C

|          | Output<br>[kW] | • Output %<br>put [kg/h]<br>V] [°C] |        |        |        |        |        |
|----------|----------------|-------------------------------------|--------|--------|--------|--------|--------|
|          |                | 100                                 | 90     | 80     | 70     | 60     | 50     |
| 6 M 32 C | 3,000          | 20,190                              | 18,500 | 16,795 | 15,090 | 13,065 | 11,040 |
|          |                | 320                                 | 318    | 318    | 318    | 334    | 351    |
| 8 M 32 C | 4,000          | 25,705                              | 23,950 | 21,715 | 19,250 | 16,450 | 13,745 |
|          |                | 335                                 | 326    | 318    | 321    | 336    | 352    |
| 9 M 32 C | 4,500          | 30,190                              | 28,238 | 26,288 | 23,000 | 19,965 | 16,925 |
|          |                | 325                                 | 313    | 303    | 302    | 313    | 333    |

All values for single log charging. Pulse charging values: on request.

## 14. Appendix

### 14.1.3 Exhaust gas sound power level



## 14. Appendix

### 14.2 Fuel oil system



### 14.2.1 Viscosity/temperature diagram

## 14. Appendix

### 14.3 Cooling water system

### 14.3.1 Flow velocities



#### 14.4 Air borne sound power level

The air borne sound power level is measured in a test cell according to EN ISO 9614-2.

#### Noise level for M 32 C engines



tolerance: +/- 2 dB



tolerance: +/- 2 dB

### 14.4 Air borne sound power level

The air borne sound power level is measured in a test cell according to EN ISO 9614-2.

#### Noise level for M 32 C engines



tolerance: +/- 2 dB

### 14.5 Structure borne sound level $L_{v}$ , expected (measured in the test cell)



### 14.6 Data sheet for torsional vibration calculation

| CAT                                                                                                | Additional engine plant data, part "A"                                                              |  |  |  |  |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| Information for auxiliary engine(s) or Diesel Electric (DE) drive only:                            |                                                                                                     |  |  |  |  |
| Maneuvering                                                                                        | Maneuvering modes (engine at operating temperature), pay attention on dynamic positioning operation |  |  |  |  |
| Load increme                                                                                       | nt according to project guide: 🔲 yes<br>—                                                           |  |  |  |  |
|                                                                                                    | no, approved project application is enclosed                                                        |  |  |  |  |
| Generator fo                                                                                       | r auxiliary engine(s) / DE application                                                              |  |  |  |  |
| 🔲 Engine an                                                                                        | d generator on a common base frame (standard for M2DC, M25 and M32C)                                |  |  |  |  |
| 🔲 Engine an                                                                                        | d generator separate on ship foundation (standard for M43C – DE plants)                             |  |  |  |  |
| Yard supply                                                                                        | No Yes, if " <u>YES</u> " please provide the following data:                                        |  |  |  |  |
| Maker: 🔛                                                                                           | Туре:                                                                                               |  |  |  |  |
| Output [k∨                                                                                         | (A]: TVC scheme attached                                                                            |  |  |  |  |
| Dimens                                                                                             | ions as per drawings "Generator Structural Requirements for Cat Diesel Gensets" observed!           |  |  |  |  |
| Cooling sys                                                                                        | tem                                                                                                 |  |  |  |  |
| 🔲 per DE en                                                                                        | gine 🔲 for 🛄 DE engines                                                                             |  |  |  |  |
| 🔲 Auxillary e                                                                                      | ngines separate 🔲 Auxillary engines integrated in the main engine LT - system                       |  |  |  |  |
| Caterpillar sta                                                                                    | ndard: HT and NT cooler (both seawater cooled)                                                      |  |  |  |  |
| 🔲 HT sys                                                                                           | tem, number of cooler(s), designed for% of total capacity ( <u>Titanium</u> cooler required)        |  |  |  |  |
| 🔲 NT sys                                                                                           | tem, number of cooler(s), designed for % of total capacity ( <u>Titanium</u> cooler required)       |  |  |  |  |
| 🗖 Alternative                                                                                      | ly: Central cooling system - HT (freshwater cooled via NT system) and NT (seawater cooled) cooler   |  |  |  |  |
| HT system, number of cooler(s), designed for% of total capacity (Stainless steel or equal)         |                                                                                                     |  |  |  |  |
| NT system, number of cooler(s), designed for% of total capacity ( <u>Titanium</u> cooler required) |                                                                                                     |  |  |  |  |
| Alternatively: Integrated cooling system                                                           |                                                                                                     |  |  |  |  |
| HT circuit cooled by means of NT cooling water (mixing)                                            |                                                                                                     |  |  |  |  |
| IN system, number of cooler(s), designed for% of total capacity ( <u>Titanium</u> cooler required) |                                                                                                     |  |  |  |  |
| Rev cooler                                                                                         |                                                                                                     |  |  |  |  |
| Comments/Remarks                                                                                   |                                                                                                     |  |  |  |  |
| commentari                                                                                         | enarka.                                                                                             |  |  |  |  |
|                                                                                                    |                                                                                                     |  |  |  |  |
|                                                                                                    |                                                                                                     |  |  |  |  |
|                                                                                                    |                                                                                                     |  |  |  |  |
|                                                                                                    |                                                                                                     |  |  |  |  |

Caterpillar Confidential: Green

# **Caterpillar Marine Power Systems**

| neauuuarters |
|--------------|
|--------------|

**Caterpillar Marine** 

22763 Hamburg/Germany

Phone: +49 40 2380-3000

Telefax: +49 40 2380-3535

Caterpillar Motoren GmbH & Co.KG

Power Systems

A Division of

Neumühlen 9

Europe, Africa, Middle East

Americas

| Α | sia | Paci | fic |  |
|---|-----|------|-----|--|
|   |     |      |     |  |

| Caterpillar Marine<br>Power Systems<br>A Division of | MaK Americas Inc.        | Caterpillar Marine Trading<br>(Shanghai) Co., Ltd. | Caterpillar Marine Asia<br>Pacific Pte Ltd |
|------------------------------------------------------|--------------------------|----------------------------------------------------|--------------------------------------------|
| Caterpillar Motoren GmbH & Co.KG                     | 3450 Executive Way       | 25/F, Caterpillar Marine Center                    | No. 5 Tukang Innovation Grove              |
| Neumühlen 9                                          | Miramar Park of Commerce | 1319, Yan'an West Road                             | Singapore 618304                           |
| 22763 Hamburg/Germany                                | Miramar, FL. 33025/USA   | 200050 Shanghai/P. R. China                        | Republic of Singapore                      |
| Phone: +49 40 2380-3000                              | Phone: +1 954 885 3200   | Phone: +86 21 6226 2200                            | Phone: +65 68287-600                       |
| Telefax: +49 40 2380-3535                            | Telefax: +1 954 885 3131 | Telefax: +86 21 6226 4500                          | Telefax: +65 68287-625                     |

For more information please visit our website: MARINE.CAT.COM

Subject to change without notice. Leaflet No. 222 · 09.11 · e · L+S · VM3

© 2011 Caterpillar All Rights Reserved. Printed in Germany. CAT, CATERPILLAR, their respective logos, ACERT, ADEM, "Caterpillar Yellow" and the POWER EDGE trade dress, as well as corporate identity used herein, are trademarks of Caterpillar and may not be used without permission



Caterpillar Marine Power Systems is committed to sustainability. This document is printed on PEFC certificated paper.